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UNIVERSITÄT KONSTANZ





Contents

Zusammenfassung 1

1 Introduction 5

2 Geoelectric theory 9

2.1 DC Geoelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Underlying model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Analytic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Real space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Fourier space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Numerical forward solving . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 3D FD operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 2D FD operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Equation system solvers . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Homogeneous halfspace sensitivity . . . . . . . . . . . . . . . . . 20

2.5.2 4-electrode sensitivities . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Numerical calculation for inhomogeneous models . . . . . . . . . . 21

2.6 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Gauss-Newton method . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 Additional techniques . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.4 Equation system solvers . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.5 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Related theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Fluid dynamics in porous media . . . . . . . . . . . . . . . . . . . 28

2.7.2 Solute transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.3 Electromagnetic techniques . . . . . . . . . . . . . . . . . . . . . 31

2.8 Hydrogeophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Concepts and Implementation 37

3.1 ERT evaluation software . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Forward solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



iv Contents

3.1.3 Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.5 Optimal acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Joint approaches for hydrogeophysics . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Conventional method . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Inverse method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Integrated inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.6 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Other implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Electrode spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Multichannel optimization . . . . . . . . . . . . . . . . . . . . . . 57

4 Experiment 63

4.1 Experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 ERT configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion and Summary 77

Bibliography 81

Acknowledgements 85



Zusammenfassung

Hydrologische Fragestellungen erhalten in Zeiten steigender Wasserknappheit und Verschmutz-
ung von Böden und Grundwasser eine zunehmende Bedeutung. Methoden zur großräumi-
gen Bestimmung des Wassergehalts von Böden sowie zur Untersuchung der Ausbreitung
von Schadstoffen und Düngemitteln sind längst nicht mehr nur für Anwendungen im Agrar-
bereich von Interesse, sondern besitzen zunehmend Relevanz für die Sicherstellung der
Trinkwasserversorgung. Auch für die Ankopplung von Klimamodellen ist ein Verständnis
von Wassertransport in Böden von großem Interesse.

Die genannten Anwendungen setzten die Untersuchung hydrologischer Prozesse auf Feld-
skala, d.h. von mehreren Metern bis vielen Kilometern, voraus. Die klassischen Mess-
methoden der Hydrologie, die auf Probennahme basieren, erreichen allerdings nur eine sehr
begrenzte räumliche und zeitliche Auflösung. Außerdem kann durch die Probennahme das
natürliche Flußsystem gestört werden. Geophysikalische Messungen sind hingegen größten-
teils nicht invasiv und zudem in der Lage, räumlich aufgelöste Information über den Bo-
den zu liefern. Der Einsatz geophysikalischer Methoden zur Bearbeitung hydrologischer
Fragestellungen ist daher vielversprechend. Aus einem Zusammenspiel von Geophysik, Hy-
drologie und Bodenphysik ist daher das noch junge Feld der Hydrogeophysik entstanden, in
dem auch diese Arbeit angesiedelt ist.

Bei der Behandlung größerer hydrologischer Probleme ist in der Regel eine Kombination
aus Modellierung und Messung nötig. Für die in dieser Arbeit betrachteten Stofftrans-
portprozesse wird beispielsweise ein Modell aus der Bodenphysik für den lokalen Wasser-
sowie den Stofftransport angewandt. Die Herausforderung liegt hierbei neben der Auswahl
geeigneter Modelle in deren Parametrisierung. Letztere soll durch eine möglichst geringe
Anzahl geophysikalischer Messungen realisierbar sein. Da sich viele Modellparameter nicht
direkt messen lassen, erfordert die Formulierung der Schnittstelle zwischen den Messdaten
einerseits und den Modellparametern andererseits besondere Aufmerksamkeit. Diese Arbeit
beschäftigt sich unter anderem mit diesen Schnittstellen und zielt auf eine bessere Ankop-
plung diverser geophysikalischer Methoden untereinander sowie auch an hydrologische Mo-
delle. Dabei wird insbesondere die geophysikalische Methode der Elektrischen Widerstand-
stomographie (ERT, aus dem Englischen ,,Electrical Resistivity Tomography” ) betrachtet.

ERT ist eine Methode zur Bestimmung der Verteilung des elektrischen Widerstands im Bo-
den durch Injektion von Gleichströmen. Aus der Widerstandsverteilung können Information
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über geologische Schichtungen, gelöste Stoffe im Boden und den Wassergehalt abgeleitet
werden. Schon im Jahre 1920 wurde diese Methode von Schlumberger für eindimension-
ale geologische Modelle eingesetzt. Heute findet ERT in sehr unterschiedlichen Bereichen
Anwendung: Vom Aufspüren vergrabener Bauwerke in der Archäologie (

Noel and Walker
[

1991]) über die Untersuchung von Mülldeponien (

Chambers et al. [

2006]) bis hin zu dem
für diese Arbeit relevanten Fall der Beobachtung von Transportprozessen in der Hydrologie
und Bodenphysik (

Benson et al. [

1997],

Michot et al. [

2003]).

ERT-Systeme bestehen aus einer Anordnung von Elektroden, über die Strom in den Bo-
den gespeist und das entstehende Potentialfeld gemessen werden kann. Üblicherweise wird
für jeden Datenpunkt ein Strom zwischen zwei Elektroden angelegt, und die Potentialdif-
ferenz zwischen zwei anderen Elektroden gemessen. Der so entstehende Datensatz kann
allerdings nicht direkt in ein räumliches Widerstandsmodell transformiert werden. Das in-
verse Problem, das durch die Simulation von Messdaten unter Vorgabe eines Widerstand-
modells gegeben ist, ist hingegen durch Lösung der DC-elektrischen Differentialgleichung
behandelbar. Daher kann durch eine iterative numerische Inversion auch das ursprüngliche
Problem gelöst werden. Allerdings sind ERT-Probleme in der Regel zumindest teilweise un-
terbestimmt, so dass Uneindeutigkeiten entstehen. Diese müssen durch die Definition von
Nebenbedingungen ausgeräumt werden.

Im Rahmen dieser Arbeit wurde zunächst ein Differentialgleichungslöser für die DC-elektri-
sche Gleichung implementiert. Die Modellierung arbeitet auf Basis von Finiten Differenzen.
Die Korrektheit und Qualität der berechneten Potentialfelder wurde durch Vergleiche mit
analytischen Lösungen getestet. Auch eine Funktion zur numerischen Berechnung von Sen-
sitivitäten wurde implementiert.
Für die Inversion wurde das Softwarepaket ,,Dc2dInvRes” von T. Günther verwendet,
dessen Programmtext im Rahmen einer Kooperation eingesehen werden konnte. Dadurch
war die Einbindung in ein Framework zum Datenaustausch mit dem Differentialgleichungs-
löser und den anderen in dieser Arbeit entwickelten Programmen möglich.

Eine Methode zum Stabilisieren der ERT-Inversion besteht darin, Messdaten anderer geo-
physikalischen Verfahren über die Nebenbedingungen in die Inversion einfließen zu lassen.
Diese Methode wurde von

Günther et al. [

2006] für die Einbindung seismischer Daten ange-
wandt. In dieser Arbeit wurde sie für Ground Penetrating Radar (GPR) und Time Domain
Reflectometry (TDR) adaptiert und implementiert.

Desweiteren wurde mit einem einfachen Modell ein Indikator zur Bewertung von nume-
rischen Fehlern durch die finite Elektrodeneindringtiefe entwickelt.

Ein weiterer Teil dieser Arbeit bestand in der Kombination von ERT mit der Modellierung
von Transportprozessen. Zu diesem Zweck wurde eine Schnittstelle der bestehenden Pro-
gramme zu der freien Simulations-Software SWMS-2D von Simunek erstellt. SWMS-2D
enthält einen Richards-Löser zur Simulation des Wassertransports, und einen CDE-basierten
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Löser für Stofftransport. Ein neues Konzept zur inversen Bestimmung von Transportparam-
etern mithilfe mehrerer geophysikalischer Verfahren wurde entwickelt. Dabei wurde die In-
version von Transportprozessen mit der ERT-Inversion zu einer integrierten Inversion gekop-
pelt. Für den Inversionsschritt wurde die Methode der konjugierten Gradienten verwendet.
Synthetische Tests zur Parameterschätzung konnten erfolgreich durchgeführt werden.

Um die entwickelten Methoden anhand von Messdaten testen und anwenden zu können,
wurde ein Tracer-Feldexperiment durchgeführt. Als Testfeld wurde eine Grasfläche in land-
wirtschaftlich genutzter Umgebung ausgewählt. Meteorologische Daten und Temperatur-
profile konnten von einer ebenfalls auf dem Testfeld vorhandenen Wetterstation gewon-
nen werden. Auf diesem Testfeld wurden ein Profil mit TDR-Sonden zur Wassergehalts-
und Leitfähigkeitsmessung sowie Elektroden für 2D-Oberflächen-ERT-Messungen instal-
liert. Die ERT-Messkonfiguration wurde so optimiert, dass im Tracerbereich eine möglichst
hohe Auflösung erzielt werden konnte. In diesem Kontext wurde ein einfacher Algorith-
mus für die Optimierung der Messelektrodenkonfiguration entwickelt. Für die untersuchten
Fälle reichen die Ergebnisse bei signifikanter Rechenzeitverkürzung an den Algorithmus von

Stummer et al. [

2004] heran, so dass die Anwendung auch für unser größere Elektrodensys-
teme, wie das im Experiment zum Einsatz gekommene 96-Elektrodensystem möglich wurde.
Desweiteren wurde die Multikanalausnutzung des ERT-Messinstrument SyscalPro von IRIS
Instruments, das für die Feldmessungen verwendet wurde, optimiert. Das Gerät ermöglichst
zwar Mehrkanalmessungen, diese werden von der proprietären Software aber nur mangel-
haft unterstützt. Daher wurde auf Basis der Graphentheorie ein Algorithmus entworfen, der
die Messkonfigurationen derart umordnet, dass eine optimierte Multikanalausnutzung er-
reicht werden kann. Zum Datentransfer mit dem Gerät wurde das Übertragungsprotokoll
entschlüsselt und ein neues Übertragungsprogramm verfasst.

Nach Aufbringung des Tracers (CaCl2) im Februar 2007 wurde dessen natürliche Ausbre-
itung mittels Aufnahme von ERT-, GPR- und TDR-Zeitreihen beobachtet. Kombinierte
Messdaten liegen vom Zeitpunkt der Aufbringung bis Anfang Juni 2007 vor.
In der Einzelauswertung der Daten ist mit Ausnahme eines vermutlichen ERT-Inversionsar-
tefakts eine befriedigende Übereinstimmung von ERT und TDR zu beobachten,. Die Stabil-
isierung von ERT-Daten durch TDR-Daten war in der ersten Zeithälfte des Versuchs erfol-
greich, in der zweiten Zeithälfte konnte auf diese Weise jedoch keine Stabilisierung erreicht
werden.
Eine Auswertung der GPR-Daten war wegen des lehmhaltigen Bodens auf dem Testfeld nur
in bestimmten Bereichen möglich. In diesen Bereichen zeigte sich eine sehr gute Überein-
stimmung der Einzelauswertung mit den ERT-Daten. Auch die Stabilisierung der ERT-Daten
durch GPR-Daten zeigte in diesen Bereichen sehr gute Ergebnisse.

Schließlich wurden mittels der entwickelten integrierten Inversion eine Bestimmung der
Transportparameter vorgenommen. Die auftretenden Abweichungen lassen sich weitgehend
auf fehlende Simulation von Evaporation und Transpiration durch Pflanzen zurückführen.
Eine Erweiterung des Transportmodells um diese Prozesse sollte zu einer weiteren Verbes-
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serung der Ergebnisse beitragen.

Zusammenfassend wurden in dieser Arbeit diverse aufeinander abgestimmte Algorithmen
und Dienstprogrammen entwickelt, um ERT-Daten als einzelne Methode und in Kombina-
tion mit anderen geophysikalischen Methoden und hydrologischen Modellen auszuwerten.
Die entwickelten Methoden wurden anhand eines Tracer-Feldexperiments angewandt und
getestet.



Chapter 1

Introduction

The topic of this thesis is situated in the domain of hydrogeophysics. Hydrogeophysics is
still a very young field, and emerged from the fields soil physics, hydrology and geophysics.
It addresses questions in hydrology, especially water resources, with the methods of soil
physics and geophysics. Today, these questions are becoming more and more important, as
pollution and fresh water shortage increasingly affect our society – therefore today, research
in this areas is considered as vital.

The questions posed are therefore very concrete ones, for example :

• How can we reliably assess the water distribution in an area, and predict its future
development ?

• How fast and far do harmful substances spread, when leaking into the ground ?

• How can the intrusion of salt- or brackish water be monitored ?

To answer these questions, two topics have to be addressed. Firstly, measurements and
monitoring of water and solute content are necessary. While investigation methods on a
small scale or in the lab are well developed, one often has to deal with huge areas in order
to approach the problems. Measurements have to be done on a large scale, and preferably
non-invasive and cheap. This is not possible using traditional techniques.
Secondly, in order to predict future trends, simulations are necessary. For the problems
addressed above, these simulations have to describe transport of water and solutes. The
question is therefore, which models to use, how to parametrize them and especially, how the
model parameters can be determined.
Actually, both topics are interconnected. To derive model parameters, a set of specialized
measurements is necessary, and since it is often not possible to directly measure the complete
area of interest, one has to resort to modeling.

While hydrology provides the broad setting and soil physics describes the dynamics,
geophysics comes into play when measurements are concerned. The traditional method of
hydrological investigations is based on sampling, which cannot provide the spatial and tem-
poral resolution desired. In addition, the soil system is disturbed by sampling. Geophysical

5
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methods on the other hand are mostly non-invasive and can map larger areas. Therefore, its
application in hydrology stands to reason.

In my thesis, I will study the geophysical method of Electrical Resistivity Tomography
(ERT), and its application to hydrogeophysics. In particular, the interface between ERT,
other geophysical methods and hydrology will be examined.

Introduction to ERT DC Geoelectric measurements are a non-invasive method for deter-
mining the subsurface electrical resistivity distribution. The functional principle is generally
as follows : A DC current is injected through current electrodes. In the emergent potential
field in the ground, voltages are measured by reception electrodes. This is repeated for dif-
ferent electrode arrangements, each providing a data point. Determining a resistivity model
from this data set is an inverse problem, with the DC-electric equation as a forward operator.
The first geoelectrical measurements were conducted by Schlumberger in 1920. He used an
1D-layered resistivy model (resistivity sounding), to which the DC equation could be solved
analytically. The measured data was then compared to a band of analytic curves to obtain
model parameters for each layer. Modern geoelectrical surveys use high resolution 2D or
3D resistivity models, in combination with large, automatically acquired data sets. Here,
numerical forward solvers are used, and the inverse problem is also solved automatically.
This methods are called Electrical Resistivity Tomography (ERT). ERT is a frequently used
method in geophysics, and can be used for mapping soil and rock layers, inspecting landfill
sites (

Chambers et al. [

2006]), locating contaminated ground (

Vogelsang [

1997]) or detect-
ing buried structures in archeology (

Noel and Walker [

1991]). Recently, it is also becoming
a popular method in soil science and hydrology, where it can be used for transient monitor-
ing of soil water content(

Zhou et al. [

2001],

Michot et al. [

2003]) or contaminant and tracer
propagation (

Benson et al. [

1997]).

ERT and hydrogeophysics In hydrogeophysics, one of the most interesting questions is
how to automate and integrate geophysical data processing with water and solute transport
models. In recent years, significant progress has been made in relating ERT measurements
of solute tracers with transport simulations.

Singha and Gorelick [

2006] monitored tracer
propagation between wells with a controlled water flux to test applicability of simple petro-
physical models. A. Kemna conducted a large-scale ERT tracer-study with borehole ERT
(

Kemna et al. [

2002]). Parameters for a hydraulic model could be derived from breakthrough
curves. Further research in the same setting was performed by (

Vanderorght et al. [

2005]),
who presented a method to derive transport parameters by comparing ERT inversion results
with hydraulic models.

On the other hand, joint evaluation of ERT and other geophysical methods as Ground
Penetrating Radar (GPR) and Time Domain Reflectometry (TDR) are increasingly studied.

Günther et al. [

2006] presented a joint inversion of ERT and seismic data, which stabilizes
the ERT inversion and produces consistent subsurface structure information.

Linde et al.
[

2006] was able to combine cross-borehole ERT and GPR into a joint inversion.
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This thesis aims at the direct integration of ERT with water and solute transport. Opti-
mally, such a model would not include only ERT, but also other geophysical data – in a first
step, it is aimed at TDR data.

Structure In the first chapter, the theory of ERT data evaluation is discussed. Also, a short
summary of the other methods used as well as an introduction to soil physics is given.
In chapter 2 the implementation of the ERT algorithms developed for this thesis are ex-
plained. Also, concepts on integrating geophysical and hydrological data processing are
transferred to ERT, and a new concept is presented.
Finally, chapter 3 presents the tracer experiment conducted during this thesis. The methods
presented before are applied and the results discussed.
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Chapter 2

Geoelectric theory

In this section, the theory of Electrical Resistivity Tomography and other theory which is
used in this thesis is introduced and briefly explained.

2.1 DC Geoelectrics

Measuring data Today, ERT measurements are usually performed using a fixed, large set
of electrodes (50 – 200). In this thesis, the focus lies on surface ERT, which means these
electrodes are inserted in the surface, forming a line for 2D measurements, and a grid for 3D
measurements

1.
Mostly four-electrode measurements are performed. Current is injected via a pair of

current electrode, denoted by A and B, and the emergent potential field is measured differ-
entially at two potential electrodes M and N. This method has the advantage that contact
resistance of the electrodes to the ground are less relevant. For theoretical considerations,

1

The other popular type, borehole ERT, uses electrodes buried at several depths in boreholes. The mathe-
matical and numerical treatment is almost identical, with the addition of a source term mirrored at the surface

Figure 2.1:

Wenner-α array (a), and Dipole-Dipole array (b) schematics

9
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the simpler so-called Pole-Pole measurements are usually considered, with one current and
one potential electrode, referencing to the zero ground.

2. Due to linearity, results for Pole-
Pole arrays can be easily transformed to four-electrode measurements by superpositioning.
Therefore in this chapter, mainly pole-pole configuration is assumed.

While traditionally, two electrodes for current injection and two electrodes for voltage
measurement were placed and connected manually for each data point, on modern systems
all electrodes are connected to a switching unit, which automatically assign current and po-
tential electrodes each step. With a large number of electrodes, not all combinations of cur-
rent and potential electrodes are measured, but a subset called “measurement array”. Typical
arrays for 2D line measurements include Wenner-α and Dipole-Dipole, which are depicted
in fig.

2.1. An array is divided into data levels, which share a common set of parameters
(a,n), but feature shifted starting points.

Apparent resistivity Often, the measured data is given not as potential difference, but as
apparent resistivity

ρa = k
∆V

I
.

The configuration factor k is defined so that ρ = ρa for a homogeneous halfspace resistivity
model (

2.7), so that

k =
2π

1
|rA−rM| −

1
|rA−rN| −

1
|rB−rM| + 1

|rB−rN|

for a surface electrodes setting without surface topology. Apparent resistivity can be used to
get a first impression of the resistivity distribution to be expected, but is no suitable base for
any qualitative analysis.

Data evaluation The transformation from the measured data set to the real subsurface re-
sistivity model is the problematic step in ERT measurements. While the reverse direction can
be described easily by the DC differential equation (“forward operator”), an easy mapping
from data to model is not possible. Adding to the problem, this problem is partly under- and
partly overdetermined, in an irregular fashion determined by the chosen measurement array
and resistivity model discretization. Solutions therefore use the inverse approach, in which
one or multiple resistivity models are estimated, the forward operator is applied, and the
generated data (“forward response”) is compared to the measured data set. Then, the models
are updated and the procedure is repeated, until a satisfying model is found.

In the following chapters, these steps are described in detail.

2

While Pole-Pole measurements can be experimentally approximated by fixing one current and potential
electrode at the far limit, this method tends to provide low quality data.
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2.2 Underlying model
For a current density j,charge density ρ and the E/M-fields (E,D,B,H), Maxwell’s equa-
tions state

∇D = ρ

∇B = 0

∇× E = −∂B
∂t

∇×H = j +
∂D

∂t

We can then deduce

0 = ∇(∇×H) = ∇j +
∂ρ

∂t
(2.1)

In geoelectrical measurements, a DC current is injected into the ground via electrodes. Since
electrode size is small compared to the investigated ground array, the electrodes are usually
assumed to be a point current source. With an electrode located at rinj injecting a current
I = const, (

2.1) is

∇j = −Iδ(r− rinj) (2.2)

Assuming a scalar potential field Φ that vanishes for infinite distances, we can state

E = −∇Φ (2.3)

Usually, an isotropic resistivity model following Ohm’s law is assumed for the ground, giving

j = σE (2.4)

where σ is the electrical conductivity. Equation (

2.2) - (

2.4) can be combined to form the
governing geoelectrical equation

∇(σ∇Φ) = −Iδ(r− rinj) (2.5)

(

2.5) is an elliptic partial differential equation (PDE). It is defined for Φ ∈ C2, i.e. twice
differentiable, and σ ∈ C1 within the domain Ω. Unique solutions require the specification
of boundary conditions at the domain boundary. Analytic solutions for (

2.5) exist for a
number of conductivity models (see chapter

2.3), while for generic conductivity distributions
numerical calculations have to be performed. Numerical solutions to elliptic PDE have been
widely studied, and the equation is considered to be rather easy to treat numerically. The
singular source term on the right hand poses the main problem for numerical solving.

2.3 Analytic solutions
An analytic or semi-analytic solution is known for a number of conductivity distributions.
Though analytic solutions are not used any more for data interpretation, they can be used as
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ground, σ
0  z

Air

x
r

inj

Figure 2.2:

Homogeneous half-space with injecting electrode.

starting models or primary fields for numerical calculations, as well as for accuracy testing
of the discrete solvers. The two most relevant problems are the homogeneous half-space,
and the horizontal two-layered models. The analytic treatment to these and other problems
is discussed in details in

Wait [

1982]. Here, the results for the potential distribution are
presented for these cases in a brief manner.

2.3.1 Real space

Homogeneous half-space For a homogeneous half-space model with the conductivity σ0

of the ground (z > 0) and a surface current source at the origin, (fig.

2.2) (

2.5) simplifies to
the regular possion equation

σ04Φ = −I∇2(r) (2.6)

The solution for the lower half-space is known to be

Φ0(r) =
I

2πσ0|r|
(2.7)

For a subsurface source at rinj = (xs,ys, zs) the effect of the earth’s surface has to be con-
sidered. The solution is superposed with the solution of the source mirrored at the surface at
rmr = (xs,ys,−zs).

Φ0(r) =
I

4πσ0

(
1

|r− rinj|
+

1

|r− rmr|

)
(2.8)

In the following, the current source is always assumed to be at the origin for brevity. For
the case of a surface current source at rinj = (xs,ys,0) the vector r obviously just has to
be shifted. When dealing with subsurface current electrodes, an additional mirror term as in
(

2.8) has to be introduced.

Horizontal two-layered model For a two-layered media

σ(z) =


0 , z < 0

σ1 , 0 < z < h

σ2 , z ≥ h

it can be shown (

Wait [

1982]) that the potential field is defined by

Φ(x, y, z) = Φσ1(x, y, z) +
I

2πσ1

∞∑
n=0

κn+1Tn(
√
x2 + y2, z) (2.9)
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where Φσ1 is the homogeneous halfspace solution with σ = σ1, and the factor κ = σ1+σ2

σ2−σ1
.

The function Tn is defined as

Tn(r, z) =
(
r2 + (2h(n+ 1) + z)2

)− 1
2 +

{
(r2 + (2h(n+ 1)− z)2)

− 1
2 , 0 < z < h

(r2 + (2h(n+ 1) + z)2)
− 1

2 , z > h

The summation in (

2.9) can be cut off at a value nthres for an approximation to the potential.

2.3.2 Fourier space
As will be described in chapter

2.4.2, numerical finite difference calculations in 2D are per-
formed in a cosine-Fourier transformed space. In order to test accuracy of the inner solver, or
pose primary fields, semi-analytic expressions in Fourier space are beneficial. Therefore, as
a fetch-ahead, the potentials for the two basic cases given above are also derived in cosine-
Fourier space. To do so, the expressions derived in the previous chapter are transformed
by

Φ̃(x, λ, z) =

∫ ∞

0

Φ(x, y, z) cos(λy) dy .

Using the relation ∫ ∞

0

cos(x)√
x2 + a2

dx = K0(
√
a2 + x2)

the transformed equations can be easily expressed by Bessel functions K0.

Homogeneous half-space (

2.7) translates to

Φ̃0(x, λ, z) =
I

2πσ0

K0(λ|x2 + z2|) . (2.10)

Horizontal two-layered model (

2.9) translates to

Φ̃(x, λ, z) = Φ̃σ1(x, λ, z) +
I

2πσ1

∞∑
n=0

κn+1T̃n(x, λ, z) (2.11)

where Φ̃σ1 is the transformed homogeneous halfspace solution. The function T̃n is defined
as

T̃n(x, λ, z) = K0(λ
√
x2 + (2h(n+ 1) + z)2+

{
K0(λ

√
x2 + (2h(n+ 1)− z)2 , 0 < z < h

K0(λ
√
x2 + (2hn+ z)2 , z > h

2.4 Numerical forward solving
The forward operator of (

2.5) is defined as the transformation from model space {m =

σ(r)}

3 into data space {d = Φ(r)}. For bodies of closed geometry, boundary integral
3

Strictly speaking, the current source location rinj and strength I also belong into model space. This is
omitted in the following for brevity.
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methods

Xu et al. [

1988] can be used to describe the forward operator. For some special
cases, e.g. layered structures of constant conductivity, a semi-analytic solution exists. For a
general conductivity distribution however, a numerical calculation on a discretized parameter
space is usually required. The discrete sampling of the continuous potential distribution is
examined best in Fourier space

Ṽ (λ) =
1

(2π)3/2

∫
R3

V (r)e−iλrdr ⇐⇒ V (r) =
1

(2π)3/2

∫
R3

Ṽ (λ)e−iλrdλ

where λ is the Fourier variable vector. Discretization on an equidistant grid with lattice
constant h means the integrals are turned into finite summation. Only components that can
be described by the transformed distribution Ṽ (λ) < 1

2h
are represented correctly as the

remaining terms vanish.
The methods most commonly used to approximate the forward operator are finite differences
and finite elements.

• Finite differences are computationally fast and straightforward to implement. How-
ever, this method requires a regular grid in e.g. cylindrical or Cartesian coordinate
system. It is used when surface elevation can be neglected, and regular spacing is
adequate.

• Finite elements are more expensive, but also more versatile. They can be used for
explicit modelling of surface topography, or for a more versatile discretization focus-
ing/boundary matching in areas of high contrast. The generation of a problem-adapted
finite elements grid is however non-trivial. See

Sasaki [

1994] for the application of FE
to Geoelectrics.

In

Li and Spitzer [

2002], a comparison of these methods can be found. There are also other
approaches on the problem, e.g. using charge densities

Boulanger and Chouteau [

2005]. For
the type of experiments conducted, finite difference are adequate, so I will concentrate on
FD methods here.

2.4.1 3D FD operator

Forward operator For 3D finite difference modelling, the domain is discretized by a grid
with nodes xi (i ∈ 1 . . . n), yj (j ∈ 1 . . .m), zj (j ∈ 1 . . . l). In the following, the discretiza-
tion scheme of

Dey and Morrison [

1979b] is used. Fig.

2.3 shows a subsection of the grid
around node (i,j,k). The potential Φijk is defined at the grid node (i,j,k), while the conduc-
tivity σijk is defined in the area bounded by the nodes (i, i+1, j, j+1, k, k+1). By integrating
(

2.5) over the domain Ωijk around node (i,j,k), we obtain

∫∫∫
Ωijk

∇(σ∇Φ) d3r = −
∫∫∫

Ωijk

Iδ(r− rinj) d3r = −Iijk (2.12)

With Γijk denoting the surface boundary of Ωijk and η the normal vector, application of
Gauss’ theorem yields

∫∫
Γijk

σ
∂Φ

∂η
dΓ = −Iijk (2.13)
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Figure 2.3:

3D-FD grid around node (i,j,k). The domain Ωijk is drawn in blue.

We now apply finite differences to the equation. For each of the six surface boundaries, ∂Φ
∂η

is approximated by a central difference, e.g. for the upper surface (∂Φ
∂η

)up ≈ Φi,j,k−1−Φi,j,k

zk−zk−1
. A

weighted mean is used for the integration of σ – in the case of the upper surface, this means

σup
i,j,k =

1

4

[
(xi − xi−1)(yj − yj−1)σi−1,j−1,k−1 + (xi+1 − xi)(yj − yj−1)σi,j−1,k−1+

(xi − xi−1)(yj+1 − yj)σi−1,j,k−1 + (xi+1 − xi)(yj+1 − yj)σi,j,k−1

]

(2.14)

The approximated integral (

2.13) can therefore be factorized as

−Ii,j,k =Cup Φi,j,k−1 + Cdown Φi,j,k+1 + Cleft Φi−1,j,k + Cright Φi+1,j,k+

Cfront Φi,j−1,k + Cback Φi,j+1,k + Cself Φi,j,k

(2.15)

where the upper example coupling coefficient Cup is

Cup = σup
i,j,k

Φi,j,k−1 − Φi,j,k

zk − zk−1

.

The self coupling coefficient Cself is the negative sum of the 6 other coefficients

Cself = −(Cup + Cdown + Cleft + Cright + Cfront + Cback)

Forming (

2.15) for every inner node lead to a system of linear equations in Φ

LσΦ = b (2.16)

where Lσ is the finite difference forward operator, and b contains the current source terms.
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Boundary conditions Since finite differences can only handle finite domains, boundary
conditions have to be introduced at the domain boundaries. There are generally 3 types of
conditions

• Dirichlet boundary conditions specify fixed potential values at the boundaries. The
exact values are not known for non-trivial conductivity models. However, it can be
made use of the fact that potential vanishes for infinite distances. A common technique
is to add some prolonged grid cells around the modeling domain, and then specifying
the potential of these new “far” boundaries as zero. Implementation is as easy as
replacing (

2.15) by Φi,j,k = c for boundary cells.

• Neumann boundary conditions fix the potentials derivative at the boundaries. As the
derivative essentially specifies the flux, Neumann conditions can be used to prevent
current flow through the ground surface, by enforcing a derivative of zero. They are
therefore called “no-flow boundary conditions”. It can implemented by omitting the
coefficient pointing outwards at the boundary layer (i.e. Cup = 0 for ground surface).

• Mixed boundary conditions relate the potential and its derivative, enforcing a poten-
tial characteristic at the boundary, instead of an absolute value. This is a better approx-
imation than Dirichlet or Neumann conditions for most problems. Mixed boundary
conditions have been proposed first by

Dey and Morrison [

1979b]. The derivative of
the homogeneous halfspace (

2.7) by the boundary’s outward normal η can be written
as

∂Φhomo

∂η
= −cos(θ)

r
Φhomo

where θ is the angle between the source vector and the outward normal vector

4. At
the vertical boundary for instance, cos(θ) = x

r
. Alternatively, other characteristics

based on e.g. the analytic solution for a layered conductivity model could also be
applied. Mixed boundary conditions have to be calculated in advance for each source
electrode configuration, but usually the source is approximated to be in the middle for
all configurations, which is a good approximation for long distances. Implementation
is done as for Dirichlet conditions.

Singularity removal As stated before, the singularity at the current source constitutes the
main challenge in forward solving (

2.5). In order the minimize the error through finite differ-
ence approximation, a very high discretization around the injection point would be required,
as this area is obviously the main error source. This is not really viable however, since
current is injected at some 50-200 different points in a typical measurement.

Lowry et al.
[

1989] was first to apply secondary field techniques to Geoelectrics. The approach is to split
the potential Φ = Φp + Φs into a primary (normal) potential Φp and a secondary (abnormal)
potential Φs, so that the secondary potential remains free from singularities. The primary
potential is chosen to be an easy-to-calculate potential, which satisfies

∇(σp∇Φp) = −Iδ(r− rinj) (2.17)
4

The injection point is assumed to be at the origin here.
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Figure 2.4:

2D-FD grid around node (i,j). The domain Ωij is drawn in blue.

Usually, the homogeneous half space model with σp = const is used. In some cases, layered
primary models can produce better result. We concentrate on the first case here. The total
potential Φ has to satisfy (

2.5) :

∇(σ∇(Φp + Φs)) = ∇(σ∇Φp) + ∇(σΦs) = −Iδ(r− rinj) (2.18)

Substituting (

2.17) in (

2.18) yields

∇(σ∇(Φs)) = ∇((σp − σ)∇Φp) , (2.19)

therefore extending (

2.16) to

LσΦs = L(σp−σ)Φp . (2.20)

As stated by

Zhao and Yedlin [

1996], obviously the singularity is removed only if σp = σ at
the injection point. Thus, for each current electrode position, a different σp has to be used.
To prevent the recalculation of the Lσp’s, (

2.20) can be written as

LσΦs = (σpL1 − Lσ)Φp = σpL1Φp − LσΦp (2.21)

due to linearity.
When using singularity removal, it is often a good approximation to set the secondary

potential to zero at the boundaries, while the enforcing of a potential characteristic makes
no longer sense. Therefore, Dirichlet boundary conditions are preferred over mixed-type
conditions in this case.

2.4.2 2D FD operator

2.5D space The underlying principles of 3D numerical forward modeling (

2.4.1) hold for
2D modeling as well. Here, the conductivities σ(x, y, z) = σ(x, z) are assumed to be con-
stant in y-direction, the potential distribution however has to be still calculated in three di-
mensions. To prevent having to solve the full 3D problem, so-called 2.5D-solving can be
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applied. Essentially, this means working with a cosine-Fourier transformed potential

Dey
and Morrison [

1979a].

Φ̃(x, λ, z) =

∫ ∞

0

Φ(x, y, z) cos(λy) dy (2.22)

Cosine-Fourier transformation of (

2.5) yields

∇(σ∇Φ̃)− λ2σΦ̃(x, λ, z) =
I

2
δ(x− xinj)δ(z − zinj) . (2.23)

∇ denotes the two-dimensional divergence/gradient here. The 2D problem (

2.23) has to be
solved for λ = 0 . . .∞ and Φ̃ has to be Fourier-backtransformed. Since only the potential at
y = 0 is needed, backtransformation reduces to an integration

Φ(x, y = 0, z) =
2

π

∫ ∞

0

Φ̃(x, λ, z) dλ (2.24)

Forward operator Again, we discretize our domain by a grid with nodes xi (i ∈ 1 . . . n),
zj (j ∈ 1 . . . l). Fig.

2.4 shows a subsection of the grid around node (i,j). The potential Φij

is defined at the grid node (i,j), while the conductivity σij is defined in the area bounded by
the nodes (i, i+1, j, j+1). To solve (

2.23), finite difference approximation is performed in the
same way as in the 3D-case (chapter

2.4.1). (

2.23) is integrated over the domain Ωij Gauss’
theorem is applied to obtain

∮
Γij

σ
∂Φ̃

∂η
dΓ− λ2

∫∫
Ωij

σ Φ̃ dr =
1

2
Iij . (2.25)

Here, η is the boundary’s outwards normal. For each of the four boundary lines in Γij , ∂Φ̃
∂η

is approximated by a central difference, e.g. for the upper line (∂Φ̃
∂η

)up ≈ Φ̃i,j−1−Φi,j

zj−zj−1
. A

weighted mean along the integration line is to approximate σ. For the upper line, this means
σup
i,j =

1

2

[
(xi − xi−1)σi−1,j−1 + (xi+1 − xi)σi,j−1

]
(2.26)

The area integral is approximated by using an weighted area mean for σ, and assuming Φ̃ to
be constant over the integration area.

σint =

∫∫
Ωij

σΦ̃dr ≈1

4

[
(zj+1 − zj)(xi+1 − xi)σi,j + (zj+1 − zj)(xi − xi−1)σi−1,j+

(zj − zj−1)(xi+1 − xi)σi,j−1 + (zj − zj−1)(xi − xi−1)σi−1,j−1

]

(2.27)

The approximated equation (

2.25) can be factorized as

−Ii,j = Cup Φ̃i,j−1 + Cdown Φ̃i,j+1 + Cleft Φ̃i−1,j + Cright Φ̃i+1,j + Cself Φ̃i,j (2.28)
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where the example upper coupling coefficient Cup is

Cup = σup
i,j

Φ̃i,j−1 − Φ̃i,j

zj − zj−1

.

The self coupling coefficient Cself is the negative sum of the 4 other coefficients and the area
integral

Cself = −(Cup + Cdown + Cleft + Cright) + λ2σint

Forming (

2.28) for every node lead to a system of linear equations in Φ̃

LσΦ̃ = b (2.29)

where Lσ is the finite difference forward operator.

Boundary conditions The types of boundary conditions as well as their advantages and
disadvantages are identical to the 3D case (eq.

2.4.1). Implementation of mixed boundary
conditions however differs, as a consequence of the Fourier space. Here, usually (

2.10) is
used for a characteristic. This yields

∂Φ̃homo

∂η
= −λ cos(θ)

K1(λ|r|)
K0(λ|r|)

where θ is the angle between the source vector and the outward normal vector η

5. Again,
due to the function’s fast decay, r can be approximated as the distance to the electrode array
middle instead of the real injection point. The boundary condition can then be precalculated
and used for every configuration.

Singularity removal Again, the results of the 3D singularity removal can be re-used for
2.5D by Fourier-transforming (

2.19).

∇(σ∇Φ̃s)− λ2σΦ̃s = −∇
(
(σ − σp) ∇Φ̃p

)
+ λ2(σ − σp)Φ̃p (2.30)

The primary potential is thus again the homogeneous halfspace, however in Fourier space
(

2.10). With the 2D forward operator L, this can be written as

LσΦ̃s = σpL1Φ̃p − LσΦ̃p .

2.4.3 Equation system solvers
(

2.29) and (

2.16) are systems of linear equations. which have at most one solution. The
matrix Lσ is positive, semi-definite and regular (except for the case of all-no-flux boundary
conditions and nonzero current injection, where Lσ is singular). Due to the FD structure, Lσ

is a sparse, banded matrix, with a bandwidth of 2n + 1 for 2D, and 2mn + 1 for the 3D

5

The injection point is assumed to be at the origin here.
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case. The system can be solved by methods like Gauss-elimination, QR-decomposition or
Cholesky decomposition together with the matching solver, which are in the complexity class
O(N3) (

Locher [

1997]). Assuming d steps for λ, this means two-dimensional solving can
be done in O(d (n l)3), compared to O((nm l)3) for full three-dimensional solving. Of the
exact solvers, Cholesky decomposition Lσ = MMT makes use best of the matrix’ structure.
The incomplete decomposition for Cholesky or LU converge much faster, and can also be
applied.

A preconditioner can be used to reduce the condition number, which can be rather high
especially when irregular grid spacing is used. Instead of the original system,

P−1 Lσ Φ = P−1 b

is solved. For P, an incomplete chalky preconditioner (Lσ ≈ PT P) shows the best results.
A comparison of different solvers can be found in

Spitzer and Wurmstich [

1995].

2.5 Sensitivity
The sensitivity SV is defined as the change of the model response f(m(r)) under the change
of the model m in the volume V .

SV =

∫∫∫
V

∂f(m(r))

∂m
d3r

Sensitivities are needed for gradient-based inversion schemes like Gauss-Newton, and also
useful for evaluation of resolution or array optimization. In the case of DC Geoelectrics,
m(r) = ρ(r) denotes the model resistivities and f is the forward operator. The model
response here is defined as the potential Φ at the electrodes for a pole-pole measurement.

2.5.1 Homogeneous halfspace sensitivity

3D sensitivity The sensitivity for a homogeneous halfspace can be calculated semi-analytically.
It is widely used for homogeneous inversion starting models and as approximations to the
real sensitivities of more complicated resistivity distributions. Without loss of generality, we
assume the current electrode at ra = (0, 0, 0) and the potential electrode at rm = (d, 0, 0).

Park and Van [

1991] showed that the sensitivity in the volume V can be calculated by the
reciprocity principle

SV (0, d) =

∫∫∫
V

∂Φa(rm)

∂ρ
d3r =

∫∫∫
V

1

ρ2

∇Φa(r)

Ia

∇Φm(r)

Im
d3r (2.31)

where Φa is the potential caused by injection of a current Ia at ra, while Φm is the potential
that would be caused by injection of a current Im at rm. Inserting the derivative of (

2.7)
results in

ShV (0, d) =
I0
4π2

∫∫∫
V

x(x− a) + y2 + z2

(x2 + y2 + z2)
3
2 ((x− a)2 + y2 + z2)

3
2

dx dy dz . (2.32)

This equation can be integrated numerically by Gauss-Legendre integration or adaptive inte-
gration methods.
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2D sensitivity For 2D sensitivity, the y-integration in (

2.32) is replaced by an infinite inte-
gration y = −∞ . . .+∞. This integration step can evaluated analytically, as shown by

Loke
and Barker [

1995]

6.

S2d
V (0, a) =

∫∫
V

I0
4π2

G(x, z, a)dx dz (2.33)

for x < a
2

G(x, z, y) =
2

β

[
K(q1)− E(q1)

β2 − α2
− a x

(β2 + α2)E(q1)− 2α2K(q1)

α2(β2 − α2)2

]
for x = a

2

G(x, z, y) =
π

2

[
1

α3
− 3x2

2α5

]
for x > a

2

G(x, z, y) =
2

αβ2

[
α2E(q2)− β2K(q2)

α2 − β2
− a x

(α2 + β2)E(q2)− 2β2K(q2)

(α2 − β2)2

]
where α2 = x2 + z2, β2 = (x− a)2 + z2, q1 = 1

β

√
β2 − α2, q2 = 1

α

√
α2 − β2, and K and E

are the complete elliptical integrals of first and second kind. Again, (

2.33) can be integrated
numerically by Gauss-Legendre integration or adaptive integration methods.

2.5.2 4-electrode sensitivities

Since the potential of a four-electrode configuration (xA, xB, xM , xN ) is a superposition of
pole-pole potentials, 4-electrode sensitivities can be calculated as

S4
V (xA, xB, xM , xN) = SVA

(0, xM)− SVA
(0, xN)− SVB

(0, xM) + SVB
(0, xN)

where VA is V shifted by −xA, VB is V shifted by −xB.

2.5.3 Numerical calculation for inhomogeneous models

The sensitivities for inhomogeneous models are calculated on a discretization grid. In the
discrete case, sensitivity is a matrix Sij, where i = 1 . . . N denotes the measurement, and
j = 1 . . .M denotes the changed model cell

Sij(ρ) =
∂Φ[i]

∂ρj
.

There are basically three ways of calculating sensitivities numerically

6

The elliptic integrals’ arguments given there have misprints, though.
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• Direct forward calculation
Consider the system of equations obtained by finite differences forward calculation,
e.g. (

2.16). Following

Spitzer [

1998], this equation can be differentiated by the resis-
tivity cells ρi

Lσ
∂Φ

∂ρi
+
∂Lσ

∂ρi
Φ = 0 .

Therefore, by solving the equation system for the vector ∂Φ
∂ρi

, the sensitivity can be
obtained. However, since each model cell and each measurement have an differing
source term, N M equations have to be solved. Although the numerical cost can be
reduced by preconditioning Lσ, this method is seldom used, as model cell counts are
high for most problems.

• Perturbation
A direct approximation of the sensitivity can be obtained by finite differences

Sij ≈
f(ρ+ ∆ρ ej)i − f(ρ)i

∆ρ

with ∆ρ being a small perturbation and ej defined as (ej)k = δj,k. This means, (nm l)

additional forward calculations with all measurements have to be calculated. For small
numbers of model parameters, this method is often used due to simplicity, for full ERT
sensitivity calculations it is however not useful due to its cost.

• Approximation
Equation (

2.31) can also be evaluated numerically. The partial derivatives are again
approximated by finite differences e.g.

∂Φi+0.5,j,k

∂x
≈ 1

4∆x

[
Φi+1,j,k + Φi+1,j+1,k + Φi+1,j,k+1 + Φi+1,j+1,k+1−

Φi,j,k − Φi,j+1,k − Φi,j,k+1 − Φi,j+1,k+1

]
This method has the advantage that only one forward calculation is needed. It however
suffers from the inaccuracies of the finite difference approximation especially near the
current injection point.

When using Quasi-Gauss-Newton inversion scheme, sensitivity is not recalculated explicitly
each step. Instead, homogeneous sensitivities are used for the first iteration, and Broyden
updates (see

2.41) are used as a means to approximate the next steps.
In inventing a model we may assume what we wish, but should avoid impossibilities.

-Aristotle

2.6 Inversion
In Geoelectrics, a model m of the subsurface has to be determined on the base of a limited
number of measurements d, which are in addition contaminated with noise. In most cases,
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it is not possible to obtain all model parameters by a direct evaluation of the measurement
data. Therefore, a model whose forward response f(m) is near the measured data vector
is sought. This is called an inverse problem. Linear inverse theory, i.e. problems with a
linear forward operator f , is a well-investigated topic. A good source here is e.g.

Menke
[

1989]. However, with the notable exception of gravimetry and vertical seismic profiling,
most geophysical problems, including Geoelectrics, are non-linear. Non-linear theory is not
nearly as well covered – A common approach for these non-linear problems is linearization.
This means iteratively recalculating the gradient and solving the linear inverse problem un-
til a threshold is met. (Quasi-) Newton type techniques

Loke and Barker [

1996] are used
most commonly and successfully for most problems, and will be described in the follow-
ing section. A comprehensive description of Newton-type and different other methods like
non-linear conjugate gradients or SIRT can be found in

Günther [

2004]. Instead of iterative
inversion, statistical approaches

Yeh et al. [

2002] or global optimization algorithms like ge-
netic algorithms

Schwarzbach [

2003] and simulated annealing could be used. They have the
advantage that an indicator for the solution goodness and uniqueness may be derived. The
computational cost is however still too high for application to realistic problems.

2.6.1 Gauss-Newton method

Inversion is essentially a minimization problem. For a data vector d, a model parameter
vector m and a forward operator f the objective function to minimize is chosen as

Ψ(m) = ‖D(d− f(m))‖2 . (2.34)

The matrix D = diag(ε−1) with data error vector ε is used here to weight the data misfit.
The error values can be determined from the measured data (standard deviation via stacking,
or reciprocity error) or be derived from an error propagation model. The L2-norm is chosen
here as the noise is assumed to be Gaussian. Sometimes L1 inversion is also desirable, as
it is less sensitive to outliers. While a direct L1 inversion is not stable for ERT, quasi L1

iterative data reweighting is commonly used (robust inversion, see chapter

2.6.3). As stated
before, Newton-type methods are iterative. Starting from a initial model m0, the model mk

is updated each iteration step k by applying a model update difference, i.e.

mk+1 = mk + ∆mk

In order to minimize (

2.34) for the updated model mk+1, we first consider the 2nd-order
Taylor series

Ψ(mk + ∆mk) ≈ Ψ(mk) + (∇Ψ(mk))T∆mk +
1

2
∆(mk)T (∇2Ψ(mk))T∆mk (2.35)

In finding minima, forcing the first derivative in ∆mk to zero is sufficient, as the positivity
of the Hessian can be shown. This results in the linear equation system

(∇2Ψ(mk))∆mk = −∇Ψ(mk) (2.36)
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For the Newton objective function (

2.34), this equation reads

[
(DS)T (DS) + (∇TST )DTD(f(mk)− d)

]︸ ︷︷ ︸
Hk

∆mk = (DS)TD(d− f(mk)) (2.37)

with the sensitivity matrix Sij = ∂f(mk)i

∂mj
(see

2.5). As the second term of the Hessian Hk is
computationally complex to calculate, it is neglected in the Gauss-Newton method. (

2.37)
reduces to

(DS)T (DS)︸ ︷︷ ︸
Hk

∆mk = (DS)TD(d− f(mk)) . (2.38)

This lowers the convergence property, especially for strong non-linear problems, but yields
a better overall execution time of the algorithm.

During each iteration, the right-hand side gradient in (

2.36) as well as the Hk have to be
calculated, and the linear problem (

2.36) solved for the update vector ∆mk. The inversion is
stopped if the root mean square (RMS) of the data misfit, or the RMS decrease rate lies under
a threshold value. Note that since the minima search is only local, the inversion might get
stuck in a local minimum that is far from the global minimum. As the problem is however
strong multidimensional and ambiguous, local minima will be largely near to the global
optimum.

2.6.2 Regularization

ERT problems are known to be severely ill-posed, due to the large number of model pa-
rameters compared to independent data points. This non-uniqueness is an inherent problem
of the ERT method. Minimizing the data misfit alone by an inversion method results in a
model which might or might not be representative of the true model. Often the application
of e.g. pure Gauss-Newton yields a highly oscillating resulting model. Therefore, additional
constraints have to be provided to the inversion, favoring e.g. feasibility, or after Occam,
“simplicity” of a model. This concept mainly bases on the work

Constable et al. [

1987]. On
the mathematical side, this process is a regularization of the matrix Hk in (

2.38). This can
be implemented by adding an additional penalty function to the objective function (

2.34)

Ψ(m) = ‖D(d− f(m))‖2 + γ‖C(m−m0)‖2 . (2.39)

m0 is here a reference model, which can a homogeneous model, a model known from previ-
ous investigations or the previous iterations’ model, depending on the desired regularization
scheme. If the reference model from the previous iteration is used, the regularization scheme
is called local regularization, else global regularization.

The regularization parameter γ controls the regularization strength, and is normally
hand-tuned for best results. (There are also approaches for automatically obtaining an ideal
γ, as the L-curve algorithm

Hansen and O’Leary [

1993]). Finally, the C matrix controls the
type of regularization



2.6. Inversion 25

• Minimum length regularization minimizes the difference between model and refer-
ence model. This is useful for example in time series, for enforcing small changes
between the measurements. Another case is ridge regression (Levenberg-Marquardt),
which limits the model update changes to prevent oscillating behavior. For Mini-
mum length regularization, the C-Matrix is an identity, or weighted diagonal matrix
C = diag(wC).

• Smoothness constraining is the most commonly used constraint for general problems.
It bases on the assumption that spatial variations in the resistivity model are slow, thus
enforcing a smooth model. This is done by using a first-order differential operator for
C. Using finite differences, C has the form

C =

 −1 1 0 . . .

0 −1 1 . . .
...

...
... . . .


for an equally spaced one-dimensional model space. For 3D, the total operator can be
composed from the respective x,y,z-Operators as

C =

 αxCx

αyCy

αzCz


Tuning of the α’s allows for supporting lateral or vertical structure, which can be
useful if e.g. layering is expected. For boundaries with high resistivity contrasts,
robust constraining (i.e. using the L1 norm) can be useful. L1 allows for sharper
boundaries than L2 smoothness constraints, therefore the typical large gradient around
the boundaries can be avoided.

• Higher-order contraining, especially second-order differential operators are also some-
times used in the same way as first-order smoothness constraints. They are useful when
dealing with abnormalities with a high resistivity contrast.

Applying the Gauss-Newton procedure in chapter

2.6.1 to the new objective function (

2.39)
yields the final equation system

(
(DS)T (DS) + γCTC

)︸ ︷︷ ︸
Hk

c

∆mk = STDTD(d− f(mk))− γCTC(mk −m0) (2.40)

It should be noted that most the problems inherent to ERT inversion can be attributed to
its ill-posedness and the therefore necessary strong regularization. Therefore, the choice of
regularization and starting model has a great impact on the inversion result. Techniques that
stabilize the inversion with additional hard data (see

3.2.3), allow for weaker regularization
and can produce more trustworthy results.
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2.6.3 Additional techniques
Here, some commonly used techniques to improve the inversion quality or speed will be
introduced shortly.

• Quasi-Gauss-Newton inversion
As Hk contains the sensitivity matrix which needs to be recalculated as well, often
Hk is not evaluated each step, but approximately updated. The procedure is called
Broyden update and was adapted to Geoelectrics by

Loke and Barker [

1996]. The
Broyden equation is

Hk+1 ≈ Hk +
(f(mk+1)− f(mk)−Hk∆mk)∆(mk)T

(∆mk)T∆mk
. (2.41)

• Line search
To improve convergence for strong non-linear problems, a line search procedure may
be implemented. Here, a parameter τ is introduces, and the optimality of a scaled
model update mk+τ∆mk is tested. This can be done by testing/interpolating Ψ(mk+

τ∆mk) for different τ . τ lies generally between 0 . . . 1, with 1 being the linear case
(

Press et al. [

2002]).

• Robust inversion
As stated above, sometimes a L1 inversion is desired for its error characteristic. As it

is however hard to cope with numerically, a quasi-L1 inversion scheme called “Robust
inversion” can be applied. It works by reweighting the data values, so that a L1 norm
is simulated. At each inversion step, a weight

|∆di|
‖∆d‖2

|∆di|2
‖∆d‖2

is calculated for each data value di. ∆di = 1
εi
(f(m)i − di) is the data misfit vector of

the current iteration. Together with the error weighting, the data weighting matrix Dk

at iteration k can be calculated as

w0
i =

1

εi

wki = wk−1
i

1

|∆di|

∑
n ∆d2

n∑
n |∆dn|2

Dk = diag(wk)

2.6.4 Equation system solvers
Each iteration step, the equation system (

2.40) has to be solved. As the sensitivity matrix S

is not sparse and mostly rather big (S ∈ RM×N with the number of data N and the number of
model parameters M), care has to be taken when solving, especially products like STS should
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not be formed explicitly. Determining the exact solution is often too costly, and approximate
Conjugate-Gradient-based algorithms (

Hestenes and Stiefel [

1952]) show the best result. An
adapted conjugate gradient method (weighted least square conjugate gradients, CGLSCD)
capable of solving equation of the type (

2.40) with non-sparse matrices S is described in

Günther [

2004].

2.6.5 Resolution
The quality and resolution of an ERT survey depends on a number of factors – the used
measurement array geometry, the model discretization and not at least also the inversion and
regularization parameters. To quantitatively evaluate the quality of different configurations,
resolution analysis can be applied. Linear resolution theory is widely discussed, e.g.

Menke
[

1989],

Meju [

1994]. Non-linear resolution analysis for ERT has recently been investigated
by e.g.

Friedel [

2003]. Again, a comprehensive overview can be found in

Günther [

2004].
Consider the data vector as a result of the true model’s forward response and a noise

vector n

d = f(mtrue) + n (2.42)

This equation is Taylor-linearized at a model iteration mk close to the true model

d ≈ f(mk) + S(mtrue −mk) + m (2.43)

Next, generalized inverse are specified for the matrices (DS) and C,

(DS)G =
[
(DS)T (DS) + γCTC

]−1
(DS)T

(2.44)

CG = γ
[
(DS)T (DS) + γCTC

]−1
CT

(2.45)

so the inversion scheme (

2.40) for a global regularization can be expressed as

mk+1 = mk + (DS)GD(d− f(mk))−CGC(mk −m0) (2.46)

Assuming k + 1 to be the final step, and inserting (

2.43) yields

mest = mk + (DS)GSD(mtrue −mk)−CGC(mk −m0) + (DS)GDn

(2.47)

= Rmtrue + (I−R)m0 + (DS)GDn .

(2.48)

Here, R = (DS)G(DS) is the resolution matrix. For a perfect resolution, R would be
the identity matrix. The more R is localized in the diagonals, the better is the correlation
between mtrue and mest. Therefore, the definition of an information content

IC =
M∑
i=1

Rii (2.49)

makes sense. Divided by the number of measurements N an information efficiency can be
introduced

IE =
IC

N
(2.50)
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Similarly,

Friedel [

2003] motivated the concept of the model cell resolution radii, which
quantifies the resolution radius of a cell i of volume ∆Vi as

resi = 3

√
3∆Vi
4πRii

(2.51)

The other information to obtain from (

2.47) is that in areas of low resolution (I − R),
the model is strongly determined by the starting model. This explains the strong influence
of the starting model in the lower model section. Numerically, information content can
be calculated more efficiently by the means of Singular value decomposition (SVD). This
approach is described in

Günther [

2004].

2.7 Related theory
For my experiments in the context of hydrogeophysics, not only Geoelectrics, but also other
geophysical methods are used. Also, an understanding of fluid dynamics and solute transport
in soil systems is needed. I will therefore present a basic introduction to some methods I
used, as well as provide the central equations. However, since the focus of my work lies on
Geoelectrics, a detailed description would be beyond the scope of this thesis.
At the end of each section I will give references to more detailed summaries to these topics.

2.7.1 Fluid dynamics in porous media
Soil is essentially a porous media, with its fluid dynamics governed by the pore space ge-
ometry. However, since this geometry is structured at different scales from micrometer to
centimeter scale for soils, a direction representation of the geometry is nearly impossible.
Therefore, a simple macroscopic description is sought. This is achieved by averaging state
parameters over a volume ∆V . For example, the macroscopic water content is defined as

θw :=
∆Vw
∆V

,

where ∆Vw is volume of the water phase inside ∆V . ∆V has to be chosen large enough
to include all scales, so that the averaged parameters are stable under enlargement of the
volume. Such a volume is a called a Representative Elementary Volume (REV), and its
existence is vital for a macroscopic description of the system. The potential energy to move
a fluid (here water is assumed) from reference position z0 with pressure p0 to the state at
position r is (for the isothermal case)

ψw(r) = pw(r)− p0︸ ︷︷ ︸
ψp

−
∫ z

z0

ρw(ξ)g dξ︸ ︷︷ ︸
ψm

(2.52)

with the density ρw and gravitational constant g. ψp, which is the potential induced by pres-
sure difference, is linear for incompressible materials : ψp(r) = (z−z0)ρg. The gravitational
part ψm is called matric potential, and dependant on the soil matrix structure.
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Darcy’s law Generally, fluid dynamics can be described by the Navier-Stokes equation.
Under the prerequisite of slow external forcing (stationary flow), small flux (neglectable
inertia), small dimensions of the system (gravity neglectable to viscosity) and incompressible
Newtonian fluids, Darcy’s law

j = −K∇p

can be deduced from the Navier-Stokes equation. j is the flux, and K the hydraulic conduc-
tivity tensor. K reduces to a scalar for homogeneous media. When considering more than
one fluid phase, Buckingham’s empirical extension to Darcy’s law can be applied. For a fluid
i it states

ji = −Ki(θi)∇ψi (2.53)

which is equivalent to Darcy’s law with an dependency of K of the fluid content θi. As
the conductivity K depends on the flow channel radius (j ∝ r2), it rapidly decreases with
decreasing fluid content.

Richards equation and parametrization Combining (

2.53), (

2.52) with mass balance
law ∂

∂t
θw + ∇jw = 0 yields Richards equation

∂θw
∂ψm

∂ψm
∂t

−∇ (K(ψm)(∇ψm − ρwg)) = 0 (2.54)

Most of the hydraulic simulation code for water movement in soils today bases on Richards
equation. As the functional relations θw(ψm) and K(ψm) can not be deduced by first princi-
ples, a parametrization is sought, which can be fit to experimental data. Most commonly, the
w3van Genuchten parametrization is used

van Genuchten [

1980]

Θ(ψm) =

(
1 + (α

ψm
ρmg

)n
)−m

(2.55)

with the parameters α > 0, n > 1, m > 0. Θ = θw−θR

θS−θR
is the water saturation, with the

saturated water content θS (which is equivalent to porosity) and the residual water content
θR.

Mualem [

1976] uses connected stacks of capillary bundles as a soil model for description
of the conductivity. Together with (

2.55), it forms the Mualem-van-Genuchten equation

K(Θ) = K0Θ
α

[
1−

(
1−Θ

n
n−1

)1− 1
n

]2

A discussion in detail is given in

Roth [

2006].

2.7.2 Solute transport

We are now looking at transport of solutes in a porous media. The mechanics of convection
and dispersion for solute transport can be derived at pore-scale, and then again be averaged
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over an REV to obtain a macroscopic continuum description. The parameter of interest here
is the averaged concentration Cw of a given solute in water

Cw =
∆M

∆Vw

with the solute mass ∆M and the REV water volume ∆Vw. In the following, a steady flow
field in an uniform porous media is assumed. Generally, the solute transport in porous media
at pore scale level is determined by convection, molecular dispersion, Taylor-Aris dispersion
and hydrodynamic dispersion. At macroscopic level, the flux law for the solute flux js is of
the form

js = θVCw ,

where V is the generalized velocity operator. Basically two transport models can be identi-
fied:

• The Stochastic Convection (SC) model assumes that the macroscopic dispersion is
only due to the flow field variability, hydrodynamic dispersion is neglected. A solute
particle entering the flow field (e.g. represented by stream tubes) keeps a constant
velocity. The flux law in SC reads

js = θvCw (2.56)

where v is the velocity vector. In this approximation, the variance of transport distance
behaves as var(z) ∝ t2. SC is a good approximation only for the near field, i.e. short
transport times.

• The convection dispersion (CD) model is represented similarly, with the difference
that the solute particle may change channels in the velocity field. The particles are
assumed to “see” the complete flow field, therefore CD is only reasonable in the far
field, i.e. long transport times. The flux law consists of a convective and dispersive
part,

js = jwCw − θDeff∇Cw . (2.57)

The effective dispersion coefficient Deff includes molecular and hydrodynamic dis-
persion. (

2.57) can be combined with mass conservation law to yield the Convection
Dispersion Equation (CDE)

∂

∂t
(θCw) +∇(θvCw)−∇(θDeff∇Cw) (2.58)

In the CD regime, var(z) ∝ t holds for the variance of the transport distance. An
extension to the CD model is the Mobile-Immobile-Model (MIM), which takes into
account that velocities in big inter-aggregate pores are considerably faster than the
inner-aggregate velocities. The fluid phase is therefore divided into a mobile and an
immobile phase.



2.7. Related theory 31

-0.5 0 0.5

0

5

10

15

20

25

30

35

40

45

50

Amplitude

T
ra

v
e
l
ti
m

e
[n

s
]

Airwave

Groundwave

Reflection

GPR System

soil layer 1

soil layer 2

a

d

b

c

a) Direct wave (Airwave)
b) Groundwave
c) Reflected wave 1
d) Reflected wave 2

Figure 2.5:

(left)GPR system with different categories of reflections, (right) example synthetic GPR trace

When considering real soil systems, the steady flow condition is almost never met. In these
cases, the fluid dynamics are calculated by Richards equation (

2.54). In the regime of long
distances, the CDE can be applied as well (with the local flow field) to calculate the solute
dynamics. However, Deff is generally a function of water flux and water content here. It is
usually written as Deff = θD0(θ)+λ(θ)jw. D0(θ) is the molecur dispersion coefficient, and
λ(θ) the materials’ dispersivity.

Again,

Roth [

2006] and

Vogel [

2004] may be referred to for a more complete treatment
of the topic.

2.7.3 Electromagnetic techniques

In my experiments, ERT data was compared with data from Ground Penetrating Radar (GPR)
and Time Domain Reflectometry (TDR) probe measurements. The parameters of interest
were the volumetric water content θ, the electrical conductivity σ and structural information
on the soil layers. Both GPR and TDR are electromagnetic techniques, and allow estimation
of the bulk dielectric permittivity εB. This parameter is of interest, as it is strongly influenced
by the soil water content.

Dielectric permittivity The bulk permittivity of soil as a 3-phase system can expressed by
the CRIM equation

Roth et al.

εB = [θεαw + (1− θS)ε
α
s + (θS − θ)εαa ]

1
α (2.59)

where εa,εw,εs denote the permittivity of the air phase, liquid phase and soil matrix respec-
tively. α is a factor on the orientation of the electric field (α = 0.5 for an isotropic medium)
while θS is the soil porosity. Since permittivity of air (εa ≈ 1) and rocks (εs ≈ 3 . . . 10) are
rather constant and small compared to the permittivity of water (εw ≈ 80), (

2.59) can be used
to determine the water content, if θS and α are known.
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Ground-penetrating radar Ground-penetrating radar (GPR) is a geophysical method that
can be used to determine subsurface structure as well as the dielectric permittivity ε. A GPR
system consists of at least one transmitter and one receiver antenna, which is moved on the
ground (see fig.

2.5). The transmitter circuit produces a short high voltage pulse which is
radiated into the ground via the transmitter antenna. The reflected signal is then received by
the receiver antenna, amplified and passed to the control unit.

For GPR, usually frequencies in the range of 10–1000 MHz are used, depending on the
application. The choice of center frequency and band width influences the spatial resolution
and penetration depth. Generally, higher frequencies allow for a higher spatial resolution
while offering smaller penetration depth. The ground material is also an important factor de-
termining penetration depth, as the radiation is for example absorbed by conducting material
(salty soil etc.).

The measured signal is voltage as a function of the signal travel time (see fig

2.5). Since
there are many possible paths for waves from transmitter to the receiver, the observed volt-
age peaks have to be associated with the origin of the wave. There is usually a direct wave,
arising from the straight connection between transmitter and receiver, and a ground wave,
coupled with the ground surface (see fig

2.5). There are also reflected waves at different soil
layers, as well as multiple reflected waves (also called ringing, not shown in the figure).
The reflected waves contain information on reflector depth as well as the dielectric permit-
tivity ε of the traversed layers, as for the velocity v applies

v =
c0√
ε

(2.60)

(at least for low-loss geological materials). The ground wave holds information about ε at
the ground/air interface.

We have to note that the depth of objects and layers can only be obtained at interfaces
with a large enough dielectric permittivity contrast. For a normal incident signal at a layer
boundary, with permittivities ε1 and ε2 respectively, the reflection coefficient is defined by
Fresnel’s law as

R =
ε1 − ε2
ε1 + ε2

.

Using (

2.60), a relation of reflector depth and permittivity is obtained, so assumptions
about one of these variables have to be made in order to obtain the other. This limitation can
be avoided by CMP or multichannel measurements.
The idea with both methods is that by measuring at least two linearly independent dataset
per position, the equation can be solved for both unknowns. Linearly independent data is
obtained by different reflection angles, i.e. different antenna separations. In CMP, the point
to measure, the midpoint between the sender and receiver, remains constants while both an-
tennas are moved in opposite directions. While this provides a continuous range of reflection
angles, CMP is obviously very laborious to conduct for more than a few data points.
Multichannel measurements on the other hand make use of multiple senders and/or re-
ceivers

7. The distances between the different sender/receiver signal paths are inherently
7

Usually, one sender and receiver antenna are fixed in an antenna system, so at least two of them would
have to be used.
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Figure 2.6:

3-rod TDR probe and Tektronics cable tester (left) and time domain signal for a probe in water
(right)

different, so with each data sample taken, multiple angles are covered. The complete system
of antennas, with fixed separations, can be pulled over the ground recording a continuous
profile, as in the case of a single channel measurement. A picture of our multichannel GPR
setup is shown in the appendix (fig.

2).
By this ray-based approach, for each layer only a mean permittivity can be obtained in

z-direction. To obtain the spatial distribution of ε, forward modeling together with inversion
techniques might be used. This approach has however been only successfully applied so far
to straight-line radar measurements (A fullwave inversion of borehole-borehole radar was
achieved by

Ernst et al. [

2007]).
A more detailled introduction to Georadar in soil physics applications can be found in

Huisman et al. [

2003],

Davis and Annan [

1998].

Time Domain Reflectometry Time Domain Reflectometry (TDR) is another way of de-
termining the bulk dielectric permittivity and also the electric conductivity of soils. It again
uses the fact that the propagation speed v of electromagnetic waves depends on the mediums
permittivity (

2.60). A TDR probe consists of two or three parallel rods of length l, which
form a waveguide (fig.

2.6). The TDR measurement instrument, for example a cable tester,
generates a pulse of voltage U0, which is transmitted through the probe. The end of the rods
poses an impedance jump, which causes a reflection. Reflections also occur at the interface
between the coaxial cable and the probe rods. The signal travel time on the rods is therefore

t =
2l
√
ε

c
,

so measuring the travel time between head reflection and rod end reflection allows the de-
termination of the permittivity surrounding the probe. A measured time domain reflection
signal ζ(t) = U(t)

U0
(TDR trace) is shown in fig.

2.6.
On the other hand, is has been shown that electrical conductivity σ can be obtained by

σ =
Kp

Zc

1− ζ(∞)

1 + ζ(∞)
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where ζ(∞) is the reflection coefficient in the limit of long travel times, Zc is characteristic
impedance of the measurement system and Kp is the probes’ cell constant. Kp depends on
the probe geometry and can be calculated, but is best obtained by calibration.

The quality of these measurement values depends on the quality of the TDR trace. For
example, since a high electrical conductivity in the soil lowers the reflection coefficient,
determination of the reflection point at the end of the rods gets harder. Therefore, permittivity
can not be determined accurately for high conductivities.

You might refer to

Robinson et al. [

2003] and

Heimovaara et al. [

1995] for a detailed
discussion on TDR.

2.8 Hydrogeophysics

Introduction In hydrology and soil physics, an understanding of water and solute dynam-
ics in porous media is sought. Hence, monitoring the spatial and temporal variation of state
variables like temperature, water content θ or solute concentration c is necessary. In the field,
this is achieved traditionally by either applying tracers and probing at different locations and
times, or by instrumenting a profile with sensors. However, these methods only provide point
information in time and space, and are invasive, so the system might get disturbed. On the
other hand, geophysical methods are mostly non-invasive, and can provide spatially resolved
data. The application of geophysical methods to the monitoring of transport processes in
soils therefore stands to reason. This emergent field is called hydrogeophysics. Here, I will
concentrate on a description of water and solute transport dynamics at the field scale.

Methods The geophysical and classical monitoring methods can be classified into three
categories

• Point measurements : Instrumented boreholes or profiles constitute this category.
The sensors will usually be temperate sensors, TDR probes for water and solute con-
tent or tensiometers for pressure head measurement. Once installed, they can provide
with hard data in high temporal resolution, but they represent only one point in space,
and care has to be taken to limit disturbances of the natural flow regime during instal-
lation.

• Large-scale measurements : Geophysical methods like Geoelectrics, Seismics and
Georadar fall in this category. With the exception of borehole techniques they are
non-invasive. While these methods can provide a spatially resolved image of the sub-
surface, state variables are determined indirectly (“soft” data). For example, Georadar
data can be related to water content, but only the mean water content between reflec-
tors can be obtained directly (see chapter

2.7.3). ERT on the other hand is limited
by the uncertainties introduced in the inversion process. The temporal resolution is
limited by the measurements duration (especially with ERT) and the manual effort to
conduct the measurements (especially with GPR).
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• Sampling The classical method to determine soil characteristics is sampling. These
soil samples from excavations can be examined in lab experiments to obtain soil char-
acteristics. Often, an undisturbed samples have to be taken, which is a time-consuming
task. Also, extensive excavation will distort the soil system.

The challenge in hydrogeophysics is therefore to take advantage of the strengths of the dif-
ferent methods, and obtain a consistent data set of optimal resolution.

Modeling Even with geophysical methods, a direct observation of transport processes is
often not possible, as the processes of interest are often on a very small scale or happen too
fast for the monitoring. Also, not only the dynamics of observable state variables θ, Cw for
a specific setting are of interest, but also characteristic values for the soil system are sought,
which would allow to transfer results to other settings. Here, numerical modeling can be
employed. The structure of the soil system is approximated by a model, and the transport
described by a set of dynamic equations. Instead of measuring the state variables directly,
parameters to the dynamic equations are determined. The state variables are then predicted
by numerical forward solving in high resolution. The quality of this prediction obviously
depends on the applicability of the dynamics model, as well as the accuracy of the measured
parameters.

A numerical transport model consists of several parts

• Governing equations An exact description of the transport dynamics can be arbitrarily
complex. Therefore, a simplified model is used, which consists of a set of partial
differential equations. For water transport at the field scale, most commonly Richards
equation (see chapter

2.7.1) is employed, while solute transport is described usually
by the CD model (see chapter

2.7.2). The limitations of these equations (e.g. short
transport distances for CDE) have to be considered.

• Structural model The heterogeneity of the soil system is approximated by dividing
the model into several sections. In each section, the material is assumed to be homo-
geneous, so the differential equations are defined with an individual set of parameters
in each section. These sections can be e.g. different soil and geologic layers.

• Parameters For a Richards model the parameters consist of the Mualem-van-Genuchten
parameters. When coupled with CDE, the dispersivity λ is required as an additional
parameter. Some of these parameters are rather easy to determine, e.g. the soil poros-
ity can be derived easily by weighing of a dried soil sample. Others, as the hydraulic
conductivity, are hard to derive directly, at least for the vadose zone. Theoretically
all parameters can be obtained by Multistep-outflow (MSO) experiments (

Schneider
[

2005]) on an undisturbed REV soil sample. However, the extraction of an undisturbed
REV sample might not be possible in all cases, boundary effects are neglected, and the
extraction of undisturbed samples is very time-consuming.

• Boundary conditions As boundary conditions for a Richards/CD model, an initial
state for the water content and solute concentration as well as the precipitation over
time are needed.
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Given the structural description of the field site (obtained by geophysical investigations
or probing), the material parameters (from soil samples, etc.) and boundary conditions (e.g.
geophysics/TDR for initial condition, rain gauge), simulations can be run. The results can
be validated by point measurements or geophysical methods.

Inverse modeling While modeling can produce high-resolution visualization of transport
processes, its quality depends on the accuracy of the material model. As pointed out, some
of these parameters are hard to obtain by direct measurements. However, the state variables
themselves are accessible through various measurements, and can be used to verify simu-
lation results. This process can be automatized by an inversion. Here, starting parameters
are obtained as above. Then a modeling step (forward calculation) is conducted, providing
a spatial and temporal map of θ, Cw, . . .. The resulting data is checked against measurement
data. This can be done efficiently for hard data, e.g. point TDR data, as shown by

Ritter et al.
[

2003]. For soft data as ERT, more advanced methods have to be sought, see chapter

3.2.
As with the ERT inversion, an update of the material parameters is calculated based on the
difference gradient, and iterated until a threshold is met. In contrast to ERT, the number of
parameters to determine is much lower, as only material parameters are inverted, not a whole
spatial model. Therefore, a simple inversion without constraints is sufficient to the problem.

The process is explained in more detail in chapter

3.2.



Chapter 3

Concepts and Implementation

In this section, new concepts developed for this thesis are presented, and the software imple-
mentation of various algorithms is described.
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Figure 3.1:

Left: Transferred potential in logarithmic λ-space (example). Right: the relative potential error as
a function of the wavenumbers used in the backtransformation

3.1 ERT evaluation software

3.1.1 Introduction

The are a number of commercially available software packages for ERT, the most well-
known being the Res2dInv program by M.Loke. For routine processing of data sets, usage
of one of these packages might be the easiest solution. In this work, however, a direct access
to the solver was required. On the one hand, it was necessary to batch process test series,
implement additional features and provide direct data exchange with other tools. On the
other hand, ERT results strongly depend on the inversion properties, due to the ambiguity of
the inverse process. Therefore, an exact understanding what steps the inversion and forward
solver are performing was needed, which is difficult without source code access.

37
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For this purpose, an ERT evaluation toolkit was developed in the course of this thesis.
A forward solver and several tools and routines were implemented – In this chapter, some
results will be briefly presented. At the time of developing the inversion code, access to a
sophisticated inversion package and its source code was obtained by an agreement of coop-
eration (see

3.1.4).

3.1.2 Forward solver

Implementation A forward solver (see chapter

2.4 for the scheme) for 3D and 2.5D was
implemented in MATLAB. It supports singularity removal and the boundary conditions men-
tioned in

2.4. As shown in the next paragraph, singularity removal together with Dirichlet
boundary conditions and grid prolonging shows the best results and will be used as a stan-
dard. I will focus on the 2.5D solver here, as the 3D case is an easier subproblem. Using
the scheme (

2.21), the forward operator matrix L has to be build twice per wavenumber.
To build L, the C-coefficients for all cells are calculated vectorized in order to avoid for-
loops, which perform bad in interpreted languages like MATLAB. First the inner body of the
model space is constructed this way, then boundaries are applied. The sparse forward ma-
trix is then constructed efficiently from the coefficient vector using the MATLAB command
spdiags. The most time-consuming step is the calculation of the Bessel functions for the
primary potential for each wavenumber. However, as it also depends on the model grid and
the wavenumber λ, it can be stored and reused when recalculating, e.g. each step of an inver-
sion. The same holds for L1, so that only one forward matrix has to be created after the first
calculation. Decomposition of this matrix is also limited to the first run. The linear equation
system is solved by decomposition using MATLABs Cholesky routine and backsubstitution.
Finally, backtransformation (

2.24) is performed using Gauss-quadrature. As can be seen in
fig.

3.1a, the potential is hard to numerically integrate, as it very steep for small wavenum-
bers. For the steep part, Gauss-Legendre integration is used, while the tail is integrated by
Gauss-Laguerre. The transition point between these two methods is approximated as

t =
1

2d
,

where d is the smallest spacing in the model grid. For both integration schemes a number of
wavelengths nλ is used. Fig.

3.1b shows the backintegration quality for different numbers
nλ. Here, the mean relative surface potential error of a vertical two-layered model is given

1.
nλ = 8 is chosen as standard parameter, as for higher numbers no significant improvement
is reached.

Performance The quality of the solver for different parameters was tested. Here, a vertical
two-layered model with a resistivity contrast of 1:10 and a boundary at 1m was used for
testing. A current of 1A is injected at x=11m. A lattice constant of 10cm was used with

1

The layers have a resistivity contrast of 1:100, the boundary is located at 1m. (

2.11) was integrated, while
(

2.9) was taken as real space reference
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a (25m × 3m) core model, with 5 logarithmically prolonged cells added at the boundaries.
The potential field with and without singularity removal is shown in fig.

3.2.

The semi-analytical potential (

2.9) is calculated and compared with forward calculations
as above. The relative potential error at the surface is shown in fig.

3.3. It can be seen that
the calculation is very sensitive to these parameters. Dirichlet boundary conditions together
with singularity removal on a prolonged grid pose the best option.

On a 1GHz machine, calculation for a model of 400× 100 cells takes 1s per wavenumber
without, and 6s/3s for the first/subsequent runs with singularity removal.

3.1.3 Sensitivities

Routines to calculate 2D/3D sensitivities have also been implemented in MATLAB. Ho-
mogeneous half-space sensitivities are only dependant on the model geometry and can thus
be precalculated. Therefore, accuracy, not speed is desired here. The analytic expressions
(

2.33) or (

2.32) are numerically integrated over the single cells of the model grid by MAT-
LABs adaptive quadrature routine to an accuracy of 10−6. A pole-pole sensitivity diagram
calculated this way is shown in fig.

3.4(a).

For calculating sensitivities for a given resistivity model, a routine for numerical ap-
proximation based on forward potentials (see

2.5.3) is implemented. A comparison of the
analytic sensitivity to the numerically calculated homogeneous sensitivity at the surface is
shown in fig.

3.4b. A grid with lattice constant of 2.5cm is used for the calculation, the mean
relative error lies at around 5%.
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The potential field of a vertical two-layered model, with and without singularity removal (in Volts)
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Surface potential deviation for different boundary conditions (BC), with/without prolonged grid
(PG), singularity removal (SR)

3.1.4 Inversion

While at first the development of our own inversion software was planned, it seemed more
efficient at some point to join another code basis. While the implementation of a pure
Gauss-Newton inversion routine (see chapter

2.6.1) is rather straightforward, the amount
of time needed for testing and tweaking to get it running as stable and fast as established
software seemed unreasonable. Therefore, a cooperation with Thomas Günther, the author
of the sophisticated inversion package Dc2dInvRes, was initiated, in which T. Günter kindly
granted full source code access. Dc2dInvRes is written mainly in MATLAB

2, so the con-
nection with the tools and routines developed in this thesis were straightforward. Apart from
Gauss-Newton inversion, it also supports SIRT, truncated SVD and conjugate-gradient based
inversion as well as various regularization schemes.

3.1.5 Optimal acquisition

Introduction

In order to maximize the information about the subsurface gained in an ERT survey, both
data processing and data acquisition are subject to optimization. While a wide range of pub-
lications studied properties of data processing, i.e. the forward solver and inversion scheme,
only recently the optimization of data acquisition has gained some attention.

Friedel [

2003],
showed the application of nonlinear resolution theory to ERT data, and

Stummer et al. [

2004]
provides an algorithm for obtaining arrays with optimal resolution properties. As these pub-
lications, I will consider optimal acquisition in terms of determining measurement arrays

2

Some tasks are performed by external C and Fortran libraries for better performance
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Top: Analytical pole-pole sensitivity. Bottom: Comparison of analytical and numerical sensitivity

with optimal resolution for a given set of electrodes. The application will be a equidistantly
spaced 2D surface profile, but the theory is not limited to this case.

The aim was to find an optimal acquisition scheme for the Grenzhof tracer experiment
(see ch.

4). Here, not a global optimal resolution, but a maximum spatial resolution in
the area of tracer application was required, which covers 2 m of the 24 m profile. Also, in
contrast to many other applications of ERT, a shallow investigation depth is sufficient, as the
tracer propagates into the ground slowly. Thus, I will present a simple approach to focus
resolution in an area of interest.

Techniques for resolution focusing

The model resolution, i.e. the elements Rii of the resolution matrix (see chapter

2.6.5) is the
best indicator for spatial information content of a given configuration. The optimal approach
therefore would obviously be to evaluate the resolution matrix for all possible combinations
of four-electrode measurements, and chose the one with

ICf =
M∑
i=1

AiRii = max

where Ai is the area of interest, which specifies a weight 0 . . . 1 for each model cell. In the
case discussed here, setting a weight of 1 in the tracer area and 0 elsewhere is sufficient. As
the calculation of R is very time consuming, it is impossible to evaluate for all combinations
of four-electrode measurements. This motivated

Stummer et al. [

2004] to develop a heuristic
for the approximate determination of the optimum, without a direct calculation of the reso-
lution matrix for every combination. Starting from a dipole-dipole base set, they evaluate all
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possible measurements i to add to the set by the goodness function

GF (i) =
M∑
j=1

|Sadd
ij |

Ssum
j

(
1−

Rbase
jj

Rcom
jj

)
(3.1)

with the sensitivity normalization term

Ssum
j =

1

N

N∑
i=1

|Scom
ij | .

Here, Scom
ij refers to the complete set of measurements, Rbase

jj to the base and previously
chosen measurements and Sadd

ij to the part of the complete set not yet chosen. The idea is to
add measurements in each step which focus their sensitivity in areas where the resolution is
still low. This process is iterated until the desired number of measurements is reached. The
method could easily be adapted to focusing by introducting a vector Ai as above in the good-
ness function. However, while this approach works fine for 30 electrodes as demonstrated
by the article, it is still too computationally expensive for the 96 electrode system used in the
experiment

3. Therefore, other indicators have to be found.
For a single measurement, the model cell resolution is basically governed by the abso-

lute sensitivity of that measurement. Therefore, taking the sensitivity coverage (sum of the
normalized sensitivities) in the region of interest as an indicator for the resolution suggests
itself.

τ =
M∑
i=1

N∑
j=1

Ai
|Sij|
Ssum
j

. (3.2)

An optimization can be done like above by iteratively adding measurements to a base pool,
maximizing τ . However, this tends to produce an unwanted inhomogeneous sensitivity cov-
erage. A way to circumvent this problem is to replace the linear summation by a function
which favors the first increases, so that coverage is raised simultaneously over all cells. This
can be e.g. the logarithm function,

τm =
M∑
i=1

log

(
N∑
j=1

Ai
|Sij|
Ssum
j

)
. (3.3)

Validation

In order to show that τ as defined above is a good indicator for the resolution, a simulation
has been run. To be able to compare the results with

Stummer et al. [

2004], a setting of 30
electrodes with 5 m spacing have been used. The discretization grid is also chosen similar,
with 30x21 cells up to a depth of 30 m of homogeneous material. For different arrays, the
coverage and the resolution matrix have been calculated. For the comprehensive array, the

3

96 electrodes ⇒ 79727040 possible measurements, whereas 30 electrodes ⇒ 657720 possible measure-
ments. The evaluation of > 1000000 measurements as well as the calculation of the complete resolution matrix
is not feasible for memory and CPU time complexity.
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Figure 3.5:

The logarithmic relative coverage (left), and relative model resolution (right), horizontal mean, for
Wenner, standard Dipole, combined Wenner-Dipole and two 670-point optimized arrays. 30 electrodes, 1m
spacing.

same restrictions have been imposed. Fig.

3.5 shows the horizontal coverage and resolution
mean for different arrays. It can be seen that the arrays with higher model resolution also
provide higher sensitivity coverage, so coverage as an indicator is able to distinguish arrays
with good from arrays with bad resolution in this case.

The figure also shows the performance of the optimization algorithm. As in

Stummer
et al. [

2004], the standard dipole-dipole set has been taken as a base set. Then, iteratively
measurements are added to the set until 670 data points are reached. It can be seen that in
this configuration, the array even has slightly higher model resolution than the array given in

Stummer et al. [

2004]. In another configuration tested, the performance was slightly below
the Stummer array. The same result was obtained for 20 and 40 electrodes.
In short, it can be found that the coverage-based optimization is comparable to the Stummer
method, at least for small numbers of electrodes where a direct comparison is possible.

Implementation for a large set

In this chapter, the implementation of the optimization algorithm is presented, and special
strategies to deal with the large number of possible measurements, induced by the large
number of electrodes used, are discussed.

Reducing the comprehensive set Even for the computationally simple approach used
here, the high number of possible measurements poses a problem. The comprehensive set
can be reduced significantly without significant loss of resolution by the application of the
following concepts :

• First of all, measurements with the two current electrodes switched carry the same
information; the same is true for the reception electrodes. Additionally, the result is
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Figure 3.6:

Three categories of measurements. Only the permutation a¡b, m¡n, b¡m is considered here.

invariant under exchange of the sender and receiver dipole, as stated by the reciprocity
principle

Park and Van [

1991]. Thus only one electrode permutation (here: a¡b, m¡n,
b¡m) has to be included in the comprehensive set.

• Measurements can be characterized into generalized Dipole-Dipole, Wenner-α and
Wenner-γ type groups, which as illustrated in fig.

3.6. The overlapping Wenner-γ
configurations are generally unwanted, as they may destabilize the inversion. These
measurements can be excluded as well.

• Measurements with a large configuration factor are also not endorsed, as these mea-
surement show small voltage differences and are therefore more susceptible to noise

4.
Here, all measurements with an geometric factor k > 1000 a are excluded, which is
equivalent to n > 6 for Dipole-Dipole arrays.

By performing these reductions, the comprehensive set can be reduced from 79727040 to
5488721 measurements (factor 14).

Implementation The optimization algorithm is an iterative (greedy) optimizer, basing on
equation

3.3 as rating function. The following steps are executed :

(i) Γ := Γ0

(ii) Λ := Λ0 \ Γ0

(iii) for every λ ∈ Λ

(a) SΓ := S(Γ ∪ λ)

(b) sc(λ) := τm(SΓ)

(iv) Γ := Γ ∪ {λ ∈ Λ‖sc(λ) = max}

(v) if num˙el(Γ) < nf , go to 2.

Λ0 is the reduced comprehensive set obtained as in the previous paragraph, while Γ0 is the
base set. The algorithm calculates τm for every possible addition to the base set, and adds
the element with the best score to the base set, until a number of nf is met. The problematic
step here is the sensitivity calculation in step 4, which is very time consuming. On the

4

This is the reason for the common advice that values of n > 6 should not be used for standard Dipole-
Dipole arrays.
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other hand, a precalculation for the complete comprehensive set is not possible for memory
reasons. However, if homogeneous sensitivities are used, a precalculation of the pole-pole
sensitivities for all possible electrode distances on a prolonged grid is sufficient. Only one
half of the result has to be saved because pole-pole sensitivities are symmetrical. In step 4,
the sensitivities can be easily constructed by horizontally shifting and superpositioning of
the precalculated sensitivity images..
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Figure 3.7:

The logarithmic absolute coverage (left), and absolute model resolution (right), vertical mean, for
Wenner-Dipole and two focused arrays. 96 electrodes, 25cm spacing.

Results For the ERT measurements in the tracer study, it is desirable to obtain maximum
resolution on a 3m-wide vertical band, in which the tracer will propagate downwards (see
chapter

4.2). In this area (around 7% of the total model cells), focusing is applied, i.e. Ai = 1

for model cells inside the band, 0 for cells outside. The optimization is carried out as above in
three stages of expansion, with 891

5, 2×892 and 3×892 additional measurements, hereafter
called Foc.1, Foc.2 and Foc.3. As a base set, a modified Wenner-Dipole-Dipole set with
3947 points is taken.

Fig.

3.7 shows the coverage and resolution for the base set and Foc.1-3 in a vertical
mean. Absolute values are given, because the resolution matrix of the comprehensive set
cannot be calculated. In comparison to fig.

3.5, the resolution enhancement achieved by
optimization is less pronounced, as the base set already has a very high information content.

Outlook

Optimization of data acquisition is currently only discussed in the context of an optimal ar-
ray configuration for a given electrode line. An optimization which includes the electrode
positions could produce better results. This is especially true for measurements that include

5

As the tracer area constist of 891 model cells in refined forward mode
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3D and subsurface electrodes, as in contrast to the 2D-line, no thouroughly tested classi-
cal arrays exist for these. A sensitivity-based approach could be applied to this problem,
too. However, a direct evaluation is nearly impossible with variable electrode positions, so
optimizers like genetic algorithms would have to be used.

Generally, in the 3D case optimization will have a larger impact as in 2D, as information
efficiency is a more important issue.

Other interesting topics for further research could include a systematic testing for 3D
effects, as the 2D hypothesis is widely used in ERT surveys and seldom verified. For a 2D
line, optimization could provide a minimal set of additional out-of-line measurements. By
the use of such a set, the existence of 3D artifacts could be reduced.

3.2 Joint approaches for hydrogeophysics

3.2.1 Introduction

As described in chapter

2.8, one of the main challenges in hydrogeophysics is the determi-
nation of transport parameters for modeling water and solute transport. As pointed out, a
direct parameter estimation is often not possible, at least not at field scale. Therefore, inverse
methods have to be used. Inverse modeling has been done for single data sources. In this
chapter, existing methods are summarized and a new integrated approach for ERT and TDR
is developed. A focus is given to multimethods, i.e. combined information from multiple
geophysical methods.

We will look at the problem class of monitoring solute transport in the vadose zone.
Therefore, the variables to monitor are water content θ and solute concentration CW . Water
and solute transport are modeled using Richards equation and CDE, respectively. The mate-
rial parameters are the Mualem-van-Genuchten parameters and the solute dispersivity λ. A
detailed description of the target study can be found in

4. The methods described here are not
limited to this special case, though. Similarly, while the methods available at the Grenzhof
field site, namely TDR, GPR and ERT, are considered here, results can easily be transferred
to other geophysical methods.

3.2.2 Conventional method

Traditionally, hydrogeophysical studies are mostly limited to one geophysical method, which
is validated by ground truth data, i.e. hard information obtained by excavation or drilling.
If multiple methods are available, overlapping data can be used for validation, and results
combined taking into account the different sensitivities and reliabilities of the respective
method. The state variables θ and CW are obtained independently by TDR, GPR and ERT.
The information obtained by the different methods has the following characteristics.

• TDR provides hard point information on the dielectric permittivity ε as well the elec-
trical conductivity σ. Using the CRIM equation (

2.59), θ can be obtained from ε.
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Figure 3.8:

Conventional data processing with manual interpretation. Str. denotes structure.

The relation between σ and Cw is rather complex (refer to ch.

4.3.2), and has to be
calibrated. TDR data can be measured with high temporal resolution.

• ERT produces a spatially resolved image of the electrical conductivity. Again, this
can be related to the solute concentration Cw by calibration. There are approaches to
relate σ to θ in areas with a constant ion concentration, but they can only be applied
only in special cases with careful calibration. Apart from the direct spatial distribution,
independent structure information on layer boundaries etc. can be extracted.

• GPR can provide spatially resolved information about ε, so that water content can be
derived. While the resolution along the surface direction can be very high, resolution
and penetration depth into the ground vary depending on the subsurface material. Us-
ing the commonly used ray-based evaluation, only the position of reflectors at layer
boundaries are obtained, and ε can be determined as a mean value over the respective
layers only.

Fig.

3.8 shows this conventional way of data interpretation. The obvious disadvantage
of this method is that this interpretation has to be done manually, which requires experience
with this kind of data, and it is time consuming. Also spatial resolution is limited, as it
depends on such factors as the inversion process for ERT and the presence of reflectors for
GPR.

3.2.3 Inverse method

As pointed out in

2.8, inverse modeling may be used to obtain a consistent, high-resolved
image of the state variables. Here, the inverse process consists of both a Richards and CDE
solver, but will be referred to as “transport inversion” thereafter for simplicity. The model
parameter vector is formed by a number of layers, each characterized by the Mualem-van-
Genuchten-parameters and λ. A full starting condition, as well as the atmospheric boundary
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Figure 3.9:

Data processing using inverse modeling

condition (precipitation) is estimated from the available data. In the forward step, a data
vector is generated to match the existing data. That is, for every point in time and space where
water content/solute concentration measurement data exists, a forward response is generated.
This forward response can be directly compared to the measurement data, and fed back in
the inversion. Of course, this procedure has to deal with the problems associated with all
inversion methods, namely non-uniqueness and stability. The data vector has to be significant
enough in order to enable stable results. Also, it only works if the subsurface structure
is simple enough (i.e. sharp boundaries, etc.) and can be determined with the available
methods. The process is shown in figure

3.9. While to my knowledge, no such attempt
is documented for ERT, it has been successfully used with other single data sources. For
TDR,

Ritter et al. [

2003] presented an onedimensional inverse approach on water content,
yielding transport parameters.

Kowalsky et al. [

2005] performed a joint inversion of the
twodimensional Richards equation with a GPR forward solver for borehole-borehole radar
data.

However, this procedure is especially advantageous when multiple geophysical methods
are used, as the manual interpretation step can be avoided by the automated integration of
the data in the inversion.
Overlapping data that does not agree, especially if produced by “soft” methods like ERT, can
pose a problem though. While a consistent image can usually be derived by hand-tuning,
considering the different reliability of data, this is hard to automatize. Therefore the question
arises on how to use overlapping data to produce a stable combined image.
One approach is to use hard data to constrain soft data, which means posing further con-
straints to the ERT inversion. This is explained in the next paragraph.

Constraining There are several possibilities to introduce additional information as con-
straints:
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• Hard constraining : If hard resistivity data is present at defined areas or points, these
values may be fixed in the inversion. This is achieved by excluding the affected model
cell from the inversion process, and using a predefined value for them. This procedure
is especially useful for incorporating TDR data. Ideally, the discretization grid should
be matched with the constrained areas.

• Soft constraining : Another option is to use regularization (see chapter

2.6.2) for
constraining. If a minimum length regularization scheme is used, then data can simply
be set in the reference model m0. Then, a weight can be given to the constrained
area by setting the respective elements of wc. If a smoothness constraint is applied, an
additional regularization term has to be used

6.

Ψ(m) = ‖D(d− f(m))‖2 + γ1‖Csm‖2 + γ2.‖Cf (m−mf )‖2 (3.4)

Here, Cs is the smoothness matrix, while Cf = diag(wf ) is the new constraint matrix.
wf contains the weights, mf the constraining resistivity values for the model cells to
constrain. They are 0 for all other cells.

• Constraining structure : Different geophysical methods measure different proper-
ties, but often see the same structure. This is especially true for ERT and GPR, as
a jump in water content between different layers also results in a jump in electrical
conductivity. Therefore, GPR reflections from layers can often be identified with lay-
ers seen in ERT. As ray-based multichannel GPR evaluation can provide relatively
exact depth information of the layer boundaries, this information could be used to
stabilize ERT layer boundaries. This is especially useful with layers with an high re-
sistivity contrast, as ERT smoothness regularization introduces a wide gradient around
the boundary. As shown by

Günther et al. [

2006] for ERT and Seismics, this can be
achieved by weighing the smoothness constraint matrix C (see chapter

2.6.2). For a
mainly horizontal layering for example, rows of the derivative matrix in z-direction Cz
belonging to model cells on the layer boundary are multiplied by a value < 1, or set to
zero entirely. This enables the ERT inversion to draw a sharp boundary along the line.
It is worth noting that the transition is not enforced, which means if ERT data does
not allow for a clear transition, none is taken. Therefore the method is robust against
reflectors seen by GPR which do not have a counterpart in the conductivity, e.g. sand
layering.

If two methods with inner inversion (e.g. ERT and full-wave GPR evaluation) are to be
coupled, the structure information can be extracted in each inversion step and fed back
into the other method as a constraint, thus iteratively establishing a common structure.

In fig.

3.9 the inverse method including constraining is presented. TDR data is used to
stabilize the ERT inversion using hard constraining and structure data from GPR and exca-
vations/drilling is used to provide sharp layer boundaries in the ERT image. The combined

6

While it is possible to combine different constraints into the same constraint matrix C, this does not
work here, as the sharp boundaries introducted into the reference model would produce unwanted terms in the
differential smoothness matrix.



50 Chapter 3. Concepts and Implementation

 

ERT data GPR data TDR data 

eval 

θ 

σ 

cw 
Str 

ε 

eval

θ 

ε Clustering 

θ cw

Integrated inversion 

Str. data

feedback 
feedback 

Figure 3.10:

Data processing using an integrated inversion

structure information of these 3 sources can then be used as an input to the transport inver-
sion.

3.2.4 Integrated inversion

As pointed out before, one main problem in combining data from different sources is the dif-
ficulty on how to handle soft data, even if the ERT inversion can be stabilized by constraining
as described above. An approach to eliminate this problem is presented here. The basic idea
is to integrate the ERT inversion with the transport inversion. The ERT forward step operates
on a resistivity model obtained by Richards (

2.54) and CD equation (

2.58). Therefore, the
inversion does not operate on a complete spatially resolved resistivity model, but only on the
set of material parameters. This greatly simplifies the inverse problem, and reduces the need
for regularization with the associated problems. The high-level schematics are shown in fig.

3.10, the integrated inversion procedure is shown in detail in fig.

3.11. mHyd.par denote the
material parameter set for Richards and CD equation. The combined forward operator of
these two equation is determined by fHyd. The output data vector dHyd consists of a spatial
and temporal resolved image of water content and solute concentration. The solute concen-
tration is transformed into a conductivity in the next step, and a background conductivity is
added. This model is the base model for the ERT forward operator fERT, which is run for all
points of time in which an ERT measurement was performed. The resulting data vectors dERT

can be compared to the measured data, and a model update step can be performed. Similarly,
water content and electrical conductivity information is extracted for all points in time and
space in which TDR measurement data is present. This is again the base for a model update
step.

In the algorithm, there are not two but one combined model update step. The different
contributions from TDR and ERT data are weighted according to reliability.
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Schematics of the integrated inversion. For clarity, only TDR and ERT paths are shown, GPR is
treated analogical.

3.2.5 Implementation

The techniques described above have been applied to the Grenzhof tracer study. The tools
necessary for separate inversion and evaluation have already been described in previous
chapters, while constraining can be added without much effort the ERT inversion code.
Therefore, these methods are applied directly to experimental data. The results can be found
in chapter

4.3.2. Integrated inversion on the other hand is a new concept with a nontrivial
implementation, therefore implementation is described here in more detail. As shown in fig.

3.11, the algorithm focuses on TDR and ERT data.

Data The data vector is formed from three data sources; ERT apparent resistivities ρapp at
a number of times tE1 . . . tEl

and TDR electrical conductivity σTDR and water content θTDR

at a number of times tT1 . . . tTk
:

d =

 β1

N
ρapp(tE1 . . . tEl

)
β2

m
σTDR(tT1 . . . tTk

)
β3

m
θTDR(tT1 . . . tTk

)


λi β is a weighting factor to balance the influence of the three methods. Given l ERT mea-
surements with N data points and k TDR measurements with m probes, the data vector has
a total of l N + 2 km data points.

Algorithm The algorithm is shown in fig.

3.11. The main process was implemented
in MATLAB, creating input files for all other required subprocesses, reading their output
and performing the inversion. For the transport forward operator (Richards/CDE), the open
SWMS-2D package (

Simunek and Vogel [

1994]) was used. It requires a discretized grid, a
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division into sections with model parameters for each section, and the atmospheric bound-
ary conditions as an input. The grid can be synthesized from layer boundary information,
which may be fixed or part of model parameter vector to invert. The model parameters in-
clude residual water content θR, porosity θS , van-Genuchten parameters α, n, the hydraulic
conductivity K and dispersivity λ. Again, part of these parameters are known and therefore
fixed, while others are subject to inversion.
For solute transport, boundary conditions have to be provided. To simulate a tracer transport
study, an initial model with concentrated solutes at the surface layer at t = 0 is provided.

SWMS outputs spatial water content and solute concentration distributions at the re-
quired times tE ∪ tT . From this output, TDR data and the ERT model is generated. The
relation σ ↔ c is assumed to be linear here for simplicity. The ERT model rescales the grid
and adds a background conductivity model, which is obtained by a real reference measure-
ment. The ERT forward step is the same as in the single ERT inversion.

For least square optimization, the MATLAB implementation of preconditioned conju-
gate gradients was chosen. A Levenberg-Marquardt type optimization is also feasible, but
the large-scale optimizer was chosen for faster convergence. The Jacobian needed is calcu-
lated by finite differences

Jij =
∂f(m)i
∂mj

≈ f(m + ei∆mi)− f()

∆mi

which causes p+1 transport forward steps per inversion step, where p is the number of model
parameters to invert.

Distributed computing One problem arising is the high numerical effort involved in this
process. Each iteration, p+1 transport forward steps and l (p+1) ERT forward steps have to
be calculated. With a mean running time of several minutes for ERT and up to one hour for
the hydraulic forward operator, computation on a single processor is not feasible. Therefore,
the procedure was partly parallelized to run on a Linux computing cluster.

SWMS itself does not support parallel computing, so one SWMS forward step consti-
tutes the bottleneck operation. Still, a parallelization factor of p + 1 can be achieved for the
SWMS step, and a much higher one for the ERT step. SWMS is available as FORTRAN
code, which was recompiled on the cluster. The input files are generated by the main MAT-
LAB process residing on a control computer, and transferred between these computers by
a scheduler. The ERT forward operator was ported and compiled on the cluster, and a file
interface was implemented for data exchange.

To efficiently distribute SWMS/ERT tasks on the cluster nodes without concurrency
problems, a task scheduler was implemented (C++). It consists of a server program re-
siding on the cluster control node, and a command tool residing available to every computer
involved. Using the command tool, the user can add or remove nodes from the processing
pool at any time by command line, the main MATLAB program can add tasks to a queue,
and the subprocesses can signalize their termination to the server. The tasks in queue are
scheduled to the next free node in the pool, and appropriate file structures are created on the
respective cluster node.
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Thus, in each inversion step, the main process feeds p + 1 SWMS processes to the
scheduler, and switch to waiting mode. As soon as a process is finished, the main process
gets notified, reads the results and posts the appropriate ERT tasks to the scheduler. When
all ERT tasks are finished, data is read out and the forward data vector can be constructed.

3.2.6 Case study

Before applying the algorithm on real data, a case study with synthetic data has been con-
ducted. As the target application the the Grenzhof tracer study (chapter

4), parameters have
been chosen as expected for this experiment.

Setting The model grid for transport forward modeling is a 6 m long and 2 m deep profile,
with a discretization of 5 cm × 2 cm. The salt concentration is initially concentrated in the
uppermost layer between 2 m and 4 m. The layering is assumed to be horizontal

7. 4 Layers
analog to fig.

4.1 are expected. Soil porosity etc. for these layers are fixed to the values
determine by soil sampling, while α, n, K and λ are unknowns. Starting values for these
parameters are taken from an hydraulic inverse model by Ute Wollschläger. It was generated
from TDR water contents using the commercial HYDRUS package. For λ approximate
values are estimated. The ERT forward operator uses a 25cm spaced 96-electrode Wenner-
Dipole configuration as described in ch.

4.1. The background conductivity model is the same
presented there.
All parameters are listed in table

4.1.

Response surfaces Before running the inversion, response surfaces, i.e. images of the
objective function in parameter space, are calculated for the model as defined above. Due to
the high time complexity of each forward step, response surfaces can be rasterized only as a
function of 2 or at maximum 3 parameters. A selection of 2D slices for different parameter
combinations is shown in fig.

3.12, separate for each of the three methods. It can be seen
that on a large scale, only one minimum exists in a 2D transect and the response surface
structure is rather simple. On a smaller scale however, there is a tendency to local minima and
complex surface geometry. This can be seen for example in the K1/α1 section in fig.

3.12.
This observation holds true for all examined 2D and 3D sections. The full multidimensional
function is expected to have a more complex structure.

For ERT data, the different gradients tend to be of the same magnitude, while for TDR
methods the gradients are further apart. For ERT data, this leads to faster converging and
lowers susceptibility to noise, but increases the chance of getting stuck in a local minimum.
By using a weighted sum of the three methods as objective function, these effects can be
finetuned by specifying the β values.

In conclusion, for the scanned area, the response surfaces results look good enough
that optimization might work, while problems with small-scale local minima might arise

7

Which is a good approximation for this patch, as shown by GPR and excavation
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Figure 3.12:

Response surface |χ| for different parameters (Arbitrary units).
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Figure 3.13:

Integrated inversion for K1,K2 and K3. The target parameters are marked by dotted lines.

depending on parameter space position. This analysis can however not rule out a potentially
highly complex surface when looking at more dimensions.

Inversion results Next, the inversion is tested for two different parameter sets. First, only
the hydraulic conductivities K1, K2 and K3 are inverted. A synthetic data set is created with
changedKi’s. K1 is varied strongly, K2 andK3 slightly from the reference model. The other
parameters are set as in tab.

4.1. The results are shown in fig.

3.13. After 20 iterations, the
inverted parameters stabilize near the target parameters.

This test is repeated with a larger set of inverted parameters, namely n and α for all four
layers. Fig.

3.14 shows the development of the parameter values. Again, they stabilize near
the target parameters, however a larger number of iterations is required. This is most likely
due to the differing sensitivity of the objective function regarding n and α.
This especially leads to very slow convergence when K, n and α are inverted together, as
the the sensitivity range is even larger there. The different sensitivities can be also observed
in the response surfaces.

3.3 Other implementations

3.3.1 Electrode spacing

Introduction Usually, ERT is used with large electrode spacings (≥ 1m). In my experi-
ment I wanted to resolve a rather shallow area (≤ 2m) with a maximum spatial resolution, so
a small spacing is desired. On the other hand, the measurement becomes more susceptible
to geometric errors with decreasing electrode spacings. A well-known effect is the suscepti-
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Integrated inversion for α and n of all layers. The target parameters are marked by dotted lines.
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Relative error of the point-source potential to the finite-intrusion length potential for different
electrode lengths
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bility to electrode positioning error, so care has to be taken during electrode set up.
A neglected aspect here is the electrode intrusion depth in the ground. To provide good
ground contact, the electrode usually is inserted rather deep in the ground. The forward
solver however assumes the current source to be a point source, an assumption that may no
longer be good for small electrode distances. The effect of this is discussed in this chapter.

Error estimation To quantify the errors induced by this effect, a simple simulation has
been conducted. The potential of an electrode with intrusion depth l is discretely approxi-
mated by a number of point sources with z ∈ [0, l], i.e.

Φf (x, z) ≈ p

l

l/p∑
i=0

Φ0(x, z + p i) .

p is the discretization lattice constant. Note that the expression for subsurface sources (

2.8)
has to be used for Φ0. In the same way, the potential seen by a receiver electrode of finite
size is assumed to be the mean of potential along its intrusion depth. A receiver electrode in
the distance d therefore sees the potential

Φr
d ≈

p2

l2

l/p∑
i=0,j=0

Φ0(d, p (i+ j)) .

For p→ 0 Φr converges against the continuous solution for a line electrode of finite size.
The “real” potential Φr is compared against the idealized point-source potential in fig.

3.15 for different electrode lengths. Here, p = 1cm is used. Naturally, the error diminishes
for large distances between current and receiver electrode. The right diagram shows that a
spacing quotient

q =
d

l
is a good parameter here. It can be concluded that q > 2 should always be ensured for the
described experiments. For the desired spacing of 0.25 m, the intrusion depth should therfore
be limited to less than 12.5 cm, which is achievable.

Error avoidance For cases in which a big q is not achievable, the forward solver can be
adapted to take the electrode length into account. This can be done by identifying p with
the FD grid lattice constant, and proceeding as above. In the FD code, this procedure uses
multiple source terms, and an additional averaging step after the calculation. When using
singularity removal, a semi-analytic expression for the line electrode could be used as a
primary field to achieve better results.

3.3.2 Multichannel optimization
Introduction

Our measurement instrument IRIS Syscal-Pro supports 10-channel in-line measurements.
For an quadrupole array, this means for every current injection dipole (a, b), up to 11 voltages
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10-channel in-line measurement schematics

and therefore 10 potential differences (mi, ni) can be measured simultaneously (

3.16) in one
multichannel measurement (MCM). In the best case, this can reduce measurement time up to
a factor of 10. However, for a given measurement array, usually only a much smaller factor
can be achieved. This is due to

• often, fewer than 10 receiver dipoles are to be measured per injection dipole, e.g. only
one in the extreme case of a Wenner array

• these receiver dipoles are generally not connected, e.g. the dipoles (1− 2), (3− 4) use
up 4 of 11 voltage channels, the difference (2− 3) remains unused

• each electrode can be used only twice, e.g. the dipoles (1 − 2), (1 − 3), (1 − 4) have
to be measured in 2 sets: (2− 1)(1− 3) and (1− 4)

The IRIS toolset features only a basic support for multichannel measurements. Therefore, I
devised an own multichannel optimization algorithm. In order to maximize the multichannel
usage, there are basically two strategies:

(i) Multichannel set generation
When generating a custom array, i.e. using a focusing or array optimization algorithm,
a full 10-channel set is directly created. This can be achieved by not choosing one
best-fit quadrupole, but a best-fit set of one injection dipole and 10 connected receiver
dipoles each optimization step. This technique is described in detail in (

3.1.5).

(ii) Multichannel set optimization
Set optimization tries to maximize the efficiency of a given measurement array by
optimal allocation of the 11 voltage channels for each injection dipole set. In contrast
to multichannel set generation, this is a non-trivial problem. The approach is described
in detail in the next chapter.

Set optimization

For a given measurement array, optimization tries to reduce the number of measurements
for each injection dipole by efficiently allocating the receiver dipoles to the multiple chan-
nels. Since Syscal-Pro expects multichannel measurements to be written sequentially in line,
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Figure 3.17:

An example problem is shown in (a). (b) shows the first multichannel set chosen by the algorithm
in red. Added connection dipoles are shown in pink. (c) shows the next algorithm step, the first set has been
removed and the next one identified.

dummy dipoles have to be inserted between non-connected dipoles, e.g. (1−2), (1−3), (4−
5) ⇒ (2− 1)(1− 3)(3− 4)(4− 5). In the following, the optimization for the measurements
belonging to one given current dipole is discussed. The process has to be repeated for every
current dipole.

This problem is essentially a graph problem. In the graph G = (E,N), the nodes N
represent electrodes and edges E represent measurement dipoles. Fig.

3.17(a) shows an
example receiver dipole graph for a given current dipole. A multichannel measurement is
represented by a set of up to 10 edges which may or may not be in E.

Π = {(ε1, . . . , εm) ∈ E ′|m ≤ 10}

where E ′ refers to the edges of the fully connected graph G′ = (E ′, N). Edges ∈ E ′, but
/∈ E are the dummy dipole mentioned above. The optimization procedure is therefore to find
a minimum set of multichannel measurements which cover all measurements, i.e. to find a
set

Σ = {(Π1, . . . ,Πn)|E ⊆
n⋃
i=1

Πi}

with minimal n. For small numbers of edges, this problem can be solved by brute force
(testing all possible permutations for optimality). However, as this method scales exponen-
tially, more advanced algorithms have to be used for larger numbers of edges. The developed
algorithm contains an heuristic to find a near-optimal solution, which will in many cases be
identical to the optimal solution.

Algorithm

(i) Build the graph G from input

(ii) G is partitioned in its connected components C1 . . . Cn.

(iii) Initialize a set of paths S = {}
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(iv) For every component Ci

(a) Find all nodes NO in the component with a odd number of connections

(b) Add all unique paths between the nodes in NO to S (this can be implemented
using a simple depth search)

(v) Initialize a high score vh = 0

(vi) Backtrack recursively through the power set of S. At each step

• For the current branch s1 . . . sn ∈ S calculate

ln = (n− 1) +
n∑
i=1

len(si)

v =

{
ln

dln/10e if ln > 10

ln − 1.5n else

(3.5)

• Stop the branch if ln > 10.

• If v vh, store new highscore.

(vii) Write the branch with the highscore as multichannel measurement to output, and re-
move the edges from G

(viii) Continue with (2) until the graph is empty

The algorithm essentially performs a greedy optimization, with the optimization function
(

3.5). It is defined so that the score rises with the number of edges ∈ E per multichannel
operation, and has a penalty for unnecessary connection edges /∈ E. So two paths of length
4, with one connection edge between the paths would receive a higher score that one path of
length 7, but a lower score than one path of length 8. Paths longer than 10 have to be splitted,
and receive an analogous partial score. The elementary operation unit of this algorithm is
not a single node, but all paths between odd-connected nodes. This takes advantage of the
fact the most optimizable arrays (i.e. Dipole-Dipole, Gradient, . . .) have a structure of long
connected lines. Even-connected nodes with a connection number > 2 are interpreted as
crossings of paths, not path junctions. It turns out that this assumption performs good for the
investigated arrays. Between these paths, a brute-force evaluation for the highest score per
path is conducted. This performed fast enough for all arrays investigated (some seconds for
3-digit measurement points). In the case of an array with largely non-connected edges, the
inner step of the algorithm would converge to the speed of a brute-force per edge algorithm.
For dealing with such problems, more advanced evaluation algorithms would have to be
sought.

3.17 shows an example problem that is solved by the algorithm into 2 multichannel sets.
The algorithm was implemented in C++. The graph partitioning in step 2 could have

been implemented by calculation of the convex hull of the graph, but here the open Boost
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Array Measurements Num MCMs scaling factor
Dipole-Dipole (a=1) 4371 480 9.1
ext. Dipole-Dipole (s=4) 958 245 3.91
Wenner 1488 1488 1
Gradient (s=15,t=1) 1185 158 7.5
Wdd+Opt3 6620 2973 2.23

Table 3.1:

Performance of the algorithm for some array types.

library was used for speed and simplicity and efficiency. The performance of the algorithm
for a number of chosen arrays is shown in table

3.1 (It can easily be shown to be optimal
for Dipole-Dipole, Wenner and Gradient arrays). The execution time for these arrays ranked
from 1s to 3s on a 1GHz machine.

Also, a tool was developed to directly transfer the optimized arrays to the Syscal in-
strument by serial port

8. For this purpose, the serial communication to the device was
eavesdropped by a serial monitor, and the binary communication protocol decoded. It is
implemented in both C++ and Matlab for connectivity to the other tools.

8

This eliminates the need to transform the array files into a IRIS-compatible format, and uploading it using
the proprietary IRIS toolset.
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Chapter 4

Experiment

To be able to test and apply the methods developed in this thesis, a field experiment was
carried out. As we were especially interested in the capability of ERT to monitor solute
transport, a tracer study has been conducted. The setup and results are presented in this
chapter.

4.1 Experiment description

Instruments The following instruments were used for the experiment :

• The ERT measurement instrument used was a Syscal Pro 96 by IRIS Instruments (fig.

1). The instrument features :

– A voltage transformer for current injection with an external source voltage 12V
and adaptive output voltage up to 1000V.

– A 12-bit AC/DC converter for measuring potential differences, with an adaptive
voltage range. 10 channels can be measured simultaneously.

– Automatic injection ranging, i.e. the injected current can be adaptively increased
if measured voltage differences are below a threshold, to improve measurement
accuracy.

– Full switching support for 96 electrodes on 11 reception channels + 2 current
channels. The electrodes are connected to the device by two 48-core cables.

• GPR measurements were performed using two 250-MHz RAMAC/GPR antennas from
Malå Geoscience, with a multichannel control unit. Both antennas are connected with
a rope or a wooden frame to keep a fixed antenna separation (fig.

2).

• For TDR measurements, custom-built 3-rod TDR probes are used (fig.

2.6). Manual
testing is done using a Tektronics 1502C cable tester, while for monitoring a Campbell
Scientific TDR-100 device is used.

63
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Figure 4.1:

Left: Sketch of the Grenzhof test site (from above). Right: TDR profile (front)

• 107 Thermistor temperature probes by Campbell are installed in a soil profile, and
monitored by a Campbell CR10X datalogger.

Setting and Installation The experiment took place at the Grenzhof test site, which is
a grassy patch of land (9x200 m) located in the farmslands west of Heidelberg-Eppelheim
(for a photograph see appendix

3). A monitoring station has been set up in February 2004,
which provides meteorological data (precipitation, wind speed and direction, radiation, air
temperature and pressure) as well as soil temperature and water content in a profile next to
the station. Details can be found in

Bretthauer [

2004]. Details on the ground structure of the
site can be found in

Wollschläger and Roth [

2005].
A 2D surface ERT line with 96 electrodes and 25 cm spacing has been permanently in-

stalled (see sketch fig.

4.1). ERT measurements and multichannel GPR measurements along
the ERT line were conducted on a weekly basis. At one border of the area of tracer applica-
tion (see next paragraph), a profile has been excavated before the start of the experiment for
soil sampling and installation of TDR probes. The probes measure water content and electri-
cal conductivity, which is useful for comparison with ERT data. The profile has a distance of
2 m to the ERT line to minimize the impact of the probes and disturbed ground on the ERT
measurements, but still obtain similar tracer concentrations as ERT.

Fig.

4.1 shows a schematic drawing of the profile, including instrumentation. Five
different layers can be identified :

(i) Humous plow horizon, roots (0–29 cm)
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(ii) Sandy loam, homogeneous (29–60 cm)

(iii) Sandy loam, dense (60–75 cm)

(iv) Transition to loam, very dense and hard (75–108 cm)

(v) Thin gravel layer (108–110 cm)

(vi) Loam, very dense, wet (110–125 cm)

(vii) Gravels (125 cm – )

In total, 10 TDR probes (30 cm rod length) have been installed in the profile at the depths
of 9.5 cm, 19.5 cm, 37.5 cm, 48 cm, 64.5 cm, 79 cm, 92 cm, 99 cm and 119 cm. At 9.5 cm
depth, an additional probe is installed in a side wall of the profile not facing the tracer area.
This enables water content estimation even when the high salt tracer concentration is too
high to reliably estimate water content from the top-most probe in the tracer area.

The TDR probes are controlled by a Campbell TDR100 device present in the monitor-
ing station. An additional 8-channel analog multiplexer was installed, and the stations data
logger reprogrammed to record TDR traces for water content and electrical conductivity esti-
mation in a three-hourly interval. The probes were calibrated in air, distilled water and water
with different salt concentrations.

Soil samples At the excavated profile, soil samples have been taken every 10 cm to deter-
mine material properties, in particular soil porosity. Also, four large undisturbed soil samples
have been taken. Using evaporation-based MSO, these samples can be examined to try to
determine hydraulic conductivity and van-Genuchten-parameters. The examination is still
underway at the time of writing of this thesis,

Appel [

2007] will describes this analysis in
detail.

Tracer application Before tracer application, several ERT, TDR and GPR measurements
were taken to provide reference information. The tracer was applied on a rectangular area
perpendicular to the ERT line. The extent was 2 m in profile direction, and 4 m in the normal
direction to provide an pseudo-twodimensional setting for the ERT inversion and minimize
3D artifacts.

As a tracer, CaCl2 salt was used. It was applied as a powder with a Cl−-ion concentra-
tion of 500 g/m2 onto the the rectangular tracer area. A previous study (

Ulbricht [

2005])
showed that this concentration is a good compromise between good visibility for ERT due to
high conductivity and side effects originating from high conductivity contrasts. No artificial
irrigation was provided, so that the tracer is propagated only by natural precipitation. By
applying the tracer as a powder, a homogeneous distribution could be achieved easier than
with the commonly used fluid tracers. Also, by avoiding additional water influx at the tracer
area, the boundary conditions for the hydraulic simulation are simplified.
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Layer θR θS α [1/m] n K [10−3cm/s] a λ [10−41/cm]

0 - 29 cm 0.045 0.37 4.22 1.13 207.6 0.5 3.0
29 - 60 cm 0.045 0.35 21.05 1.10 145.4 0.5 1.0
60 - 75 cm 0.045 0.36 1.94 1.16 79.3 0.5 1.0

75 - 200 cm 0.045 0.38 0.33 1.30 0.09 0.5 1.5

Table 4.1:

Approximated material parameters. K, α, n are obtained by TDR inverse modeling, θS is determined
from soil samples while a, λ and θR are estimates.

4.2 ERT configuration

Measuring configuration The ERT survey was chosen as a 2D surface line profile. While
borehole ERT may provide a better vertical resolution, we were interested in the performace
of non-invasive ERT, to be used alone or in conjunction with an existing TDR profile. The
subsurface structure in the surrounding area is estimated by GPR measurements to be rather
uniform, which means 3D artifacts will be limited. A as high as possible spatial resolution
is desired, so an electrode spacing of 25 cm is chosen. Smaller spacings would introduce
bigger errors as accurate electrode positioning below the cm-scale is unrealistic. To maintain
a q value of less than 2 (chapter

3.3.1), electrode length in ground should not exceed 12.5 cm,
which can be achieved while still guaranteeing a good ground contact.

A modified Wenner-Dipole-Dipole array is used because of its high information content.
As the tracer propagation is very slow, only the depth range up to 1.5 m is of interest. There-
fore, the pseudodepth levels of the dipole area are concentrated in this region. The array has
a total of 3947 measurements. Additionally, a focusing is applied to the region around the
tracer application. It is presented in detail in chapter

3.1.5. Together, a total of 4839, 5731
and 6623 data points result for focusing stages one to three. With multichannel optimization
(chapter

3.3.2), this figure is reduced to 1641, 2095, 2517, 2973 multichannel measurements
for the base set and the focused arrays respectively.

Automatic injection ranging was used with a trigger value of 200 mV

1, and 6 stack
levels

2 were chosen.

Data quality Due to good ground contact, the small spacing and the use of injection rang-
ing a very high signal to noise ratio can be achieved. Between two electrodes, line resistances
of 1-4 kΩ are measured. The standard deviation of the stacking was around 0.2%, while a
maximum deviation of 2% was observed for typical measurements in this setting.
Additionally, a reciprocal test, i.e. a measurement with current/reception dipoles exchanged,
was conducted. It showed a mean reciprocal error of 0.9%, and a maximum error of 4.5%.
Systematic errors due to electrode mispositioning will be present. As the electrode positions
were metered by measuring tape, a positioning error of ≈ 2% (array length 24.5 m ± 5 cm)

1

Injection current is increased automatically until a voltage difference of at least 200 mV is measured at the
reception dipole, or the maximum injection voltage is reached.

2

Half of these step levels are measured with positive, the other half with negative polarity in order to
minimize polarization effects.
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Figure 4.2:

Reference ERT resistivity image [Ω] from standard inversion (top), and structure-constrained in-
version (bottom). GPR reflectors are drawn as white lines

seems realistic. This error propagates linearly, introducing a 2% uncertainty in the depth
evaluation.

It can be concluded that data quality very good for an ERT experiment — One needs to
keep in mind though that the main errors in ERT images originate from the inversion process,
discretization and assumptions as 2D flatness, not from poor quality data.

4.3 Results

4.3.1 Reference image

As a reference measurement, the last measurement taken before the excavation was chosen.
It was processed by a standard Gauss-Newton inversion with smoothness constraint. A γ

value of 55 showed the best results (in terms of smallest RMS error and no visible artifacts),
and was used for all inversions. The inversion discretization grid was linearly set to one
model cell per electrode (25 cm) in x direction. In z direction, 32 logarithmically spaced
division up to 3.2 m are used, which are modified to match the TDR locations. For forward
calculations, these cells are refined by factor 4, and 5 large prolonging divisions are added at
each boundary.
The inversion result can be seen in fig.

4.2 (top). A χ2 value of 1.5, and an RMS of 1.4%
were reached.

At the same time, a GPR multichannel measurement was carried out along the ERT
line. However, the Grenzhof site is only partly suitable for GPR measurement, as the high
loam content in the upper layers leads to strong signal attenuation. Thus, a clear GPR signal
for multichannel evaluation was only present at some windows. Two reflectors visible with
GPR are drawn as white lines in fig.

4.2. It can be observed that the ERT layer boundaries
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and the GPR reflectors match rather well. However, due to the strong smoothing constraint,
especially at the right reflector, ERT draws a very smooth gradient. It is normally hard to
tell from ERT images alone if such a gradient is really present in the ground, or just an
artifact of the smoothness constraining. In the second case, the position of the real boundary
transition within the gradient remains unclear

3. Assuming that GPR reflectors also denote
resistivity changes, the upper transition to the gradient can now be specified by structure
constraining(ch.

3.2.3). The result is shown in the bottom image of fig.

4.2. The left
transition is slightly adjusted to match the GPR reflector, while at the right the upper part of
the gradient is replaced by a transition at the GPR reflector level.
In this case, the changes introduced by constraining with GPR are rather small due to limited
GPR data, but it shows the potential of the method.

4.3.2 Time series

Starting with the tracer application on February 21st, 2007, regular time series of ERT and
TDR have been measured. The ERT series was interrupted from Mid June to early July
because of a hardware failure and ended in the end of July. From mid-May, probes 2 and 3
cannot provide reliable water content due to high electrical conductivity

Atmospheric conditions Soon after the tracer application, moderate precipitation is ob-
served. In the end of March, a heavy rain event occurred, after which a period with virtually
no rainfall until mid-May can be registered. During this dry period, air and soil temperatures
increase strongly. From June on, steady precipitation with high temperatures are observed.

TDR series For the duration of the experiment, TDR data is recorded every three hours.
For the 10 installed TDR probes, only 8 multiplexer ports were available. So the two probes
at 92 cm and 119 cm are measured manually once a week. These two probes were chosen as
the first tends to provide unreliable data, and the second is the deepest probe, were dynamics
are very low. Fig.

4.3 shows the precipitation, TDR and temperature data starting from
the probe installation on February 16th. Electrical conductivity has been corrected to the
reference temperature of 25 ◦C by

σ25 = σ(T ) + αTσ(T )(T − 25 K)

with the constant αT = 0.0191 (refer to

Heimovaara et al. [

1995]). The tracer is initially not
visible, and appears in the conductivity plot after the first heavy rainfall around March 1st.
From April to mid May, temperatures are rising with virtually no rainfall, causing the upper
soil layers to dry out. The tracer seems to disappear from the conductivity plot in this time.
This can be explained by

(i) the measured conductivity depends at least linearly from the water content, and

3

Here, it is known from the excavation that actually both is true : While several layer transitions can be
identified, there is also gradual change within the lower layers.
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Figure 4.3:

Cumulative precipitation, TDR water content, TDR conductivity [corrected to 25◦ C] and soil
temperature profile data as time series. The depths of the respective probes are denoted with a circle. Water
content data of probes 2 and 3 is unreliable from mid-May on due to high conductivity.
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Figure 4.4:

Three inverted ERT resistivity images [Ωm−1] at different times.

(ii) the evaporating/transpirated water may actually cause a net flux upwards, taking tracer
salt back into areas where it is not detected by the probes.

At the end of May to mid June, heavy rainfall occurred propagating the tracer further. From
end May on, the second and third TDR probe cannot provide reliable water content informa-
tion, as the tracer concentration is too high

4.
After that, tracer propagation slows down, most likely due to different soil material. Also,
for the high summer temperatures, a partial water flux upwards due to evaporation and plant
transpiration has to be taken into account.

ERT series ERT time series data was recorded twice a week initially, and weekly after. The
data was evaluated by reference inversion. The image from fig.

4.2 is taken as a reference
to a smoothness-constrained Gauss-Newton inversion. For the first time steps, a minimum
length constraint actually showed better results, as the difference to the reference image
is small. For the later images results were very unstable, so smoothness constraining was
used for the complete series for consistency. The same is true for previous-step reference

4

This problem does not affect the topmost probe, as it is doubly installed, with one probe residing inside
and one probe outside the tracer area
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Figure 4.5:

Misfit of forward response and measured data for a WDD data set. The upper part shows the
Wenner pseudosection, the lower part the Dipole-Dipole pseudosection.

inversion, i.e. taking the result of the previous time step as a reference image. As the drastic
changes happen very fast, caused e.g. by heavy rainfalls, this method was shown to pose no
advantage over a fixed reference image, and only introduced additional instability.

A selection of ERT resistivity images is depicted in fig.

4.4. It can be seen that while the
tracer is clearly visible under the background of the upper layers, the transition to the loamy
layer in the middle tends to merge with the tracer, which is unrealistic when compared with
TDR data. Also, when displaying the misfit vector as a pseudosection, it can be seen that
most of the misfit originates from the area beneath the tracer (fig

4.5).
While this feature might be real, e.g. introduced by a preferential flow channel which is
not present in the TDR area, this is rather unlikely, as through the ERT 3D-integration the
channel would have to be large to be noticed. Therefore, it is assumed to be an inversion
instability. Two effects play an important role here :
First, the smoothness constraint discourages the formation of a small band of high resistivity
between the tracer and the clay layer with high conductivity. This effect is hard to deter; it
has been tried to lower the constraint weight in the tracer area, but which leads to infeasible
oscillations. Robust constraining helps a little, but also enforces rectangular shaping which
leads to other artifacts.

5.
Second, the information density in the affected area is very low, as the current flow con-
centrates in the tracer and the middle layer. Here, a borehole-borehole configuration could
provide a better data situation.

5

It should be noted it is possible to get the expected results by some engineering, as seen in some ERT
literature : Applying an engineered constraint weight and/or selective robust constraining in the problematic
area does produce results as expected. However, such constraining approaches which are not based on hard
data are discouraged The method of ERT constraining derives its credibility from the “simplicity” assumption,
which is infringed here, leading to a situation were almost every expected result can be engineered.
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Figure 4.6:

TDR and ERT resistivity [Ωm−1], averaged over the tracer region, in the time window of continuous
ERT measurements.

Another effect that can be observed in the ERT images is the “hole” in the bottom layer
beneath the tracer area, originating from the TDR profile 2 m away. While the TDR probes
themselves are unlikely to produce any measureable influence on the ERT data, their con-
nection to a common grounding effectively induces a shortcircuit in the ERT potential field.
As the profile is in 2 m distance, mainly the measurements with a large separation are af-
fected, which are also provide the information for the lower layers. The upper layers remain
undisturbed, so the tracer monitoring is not affected.

TDR / ERT comparison In the next step, consistency of ERT and TDR is tested. As the
ERT grid is matched to the TDR probe locations, the measured TDR resistivities and the
respective inverted ERT resistivities can be compared directly. For 7 TDR probes and the
dates of ERT measurement, these values are crossplotted in fig.

4.7. It can be seen that while
most probes fit acceptably with the ERT data, especially the probe at 37.5 cm shows a strong
deviation. This matched the observation that the ERT inversion has problems forming the
area below the tracer, as described in the previous paragraph. With a change in the ERT
inversion parameters, this crossplot changes dramatically, indicating the instability of the
ERT inversion in the tracer area.

To examine the full temporal process, ERT and TDR resistivity sections have been plot-
ted in the time windows of regular ERT measurements in fig.

4.6. The image is focused on
the upper 1 m. The ERT data is averaged in x-direction over the tracer area. Three major
discrepancies can be found between the ERT and the TDR data :

(i) The shallow high-resistivy layer in the ERT data starting in late March cannot be ob-
served by TDR. This is simply because the first TDR probe sits in 10 cm depth, so
TDR cannot see it.
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Figure 4.7:

ERT and TDR resistivity crossplot.

(ii) The second feature is the high-resistivity layer between 40 cm and 60 cm, which is not
present in ERT data starting from late March. This instability has been discussed in
the previous paragraph.

(iii) The high resistivity break-in in early May is less pronounced in ERT as it is in TDR.
One explanation could be that water content in the upper layers is smaller at the TDR
probe location as the ERT area, raising the effective resistivity for TDR. This is plausi-
ble, as most of the vegetation in the tracer area died due to high salt concentration. The
TDR probes are located on the border of the tracer area, and are partly affected by the
transpiration of the surrounding grass. The uppermost TDR probe for water content is
complete outside the tracer area, facing significantly more transpiration.

TDR Constraining TDR data can be used to constrain the ERT inversion further, by fixing
TDR resistivity values at the respective cells (see paragraph

3.2.3). Two example pictures
can be seen in fig.

4.8. These images match the fist two images in fig.

4.4. It can be
noted that in the upper image an improvement in stability is achieved by the constraining.
In the lower image, constraining in the high-resistivity band is not sufficient though, which
can be seen in that the constrained cells (turquoise strip) don’t merge with the area left and
right. To quantify the quality improvement by constraining, χ2 is plotted for the TDR-
constrained and unconstrained case over the entire time series (fig

4.9). Here, also the effect
of Focusing is tested: In the curves denoted with WDD, the data has been stripped to the
base Wenner-Dipole-Dipole set before the inversion. It can be seen that the focused set with
TDR constraining shows the smallest misfit, as expected.
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Figure 4.8:

Two example inverted ERT images [Ωm−1], using hard TDR constraining.

Modeling

As the ERT inversion leads to several problems, integrated inversion (see ch.

3.2.4) was
applied, and shown to succeed as a proof of principle. It was calibrated using a simple
transfer function, further improvement will be possible by thourough testing and calibration.

A simple transfer function The coupling between SWMS output and ERT, TDR input,
i.e. the transfer function from calculated solute concentration to measured electrical conduc-
tivity, is problematic in pratice. While there are empirical and model-derived descriptions
for this function, they could only be validated with good results in lab experiments. In the
field, the complex dynamics of temperature, water content and the different electrical trans-
port processes often lead to different descriptions, depending on the site

Boike and Roth. As
pointed out

Boike and Roth, a calibrated linear transfer model might actually provide better
results than the multivariable equations by van Loon or Mualem-Friedmann (

Mualem and
Friedmann [

1991]) in the field. Therefore,

σT = Aθσw = Bθcw

is used to describe the tracer. Together with the background conductivity σB not related to
the tracer, the function reads

σ = σB + Aθσw = σB +Bθcw .

Calibration will be done for the reference temperature of 25◦, so θB and σ will have to be
temperature corrected by

σ25 = σ(T ) + αTσ(T )(T − 25 K) .



4.3. Results 75

2

4

6

8

10

12

14

16

18

20

WDD [76.2]

WDD + cstr 73.9]

Foc3 [70.9]

Foc3 + cstr 66.7]

χ
2

Figure 4.9:

χ2 of different configurations for the complete ERT time series.
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Figure 4.10:

Development of the hydraulic conductivities during the inversion process.

For simplicity, the constant reference model is used as a background conductivity model.
The error introduced by this assumption is constant for all configurations, so this should not
affect the inversion. The calibration constant B is estimated using the ERT set where the
tracer peaks at 20 cm, and a matching SWMS forward calculation. This way, B is estimated
as

B ≈ 4.65 10−4Sm
4

g
.

Inversion of hydraulic conductivity For testing, only the hydraulic conductivities were
inverted, as they have a significant influence on the dynamics, while being some of the hard-
est parameters to determine. Here, the other parameters are assumed to be correct, or at least
close enough to the real parameters. With the addition of the calibrated transfer function, the
same setup and parameters as in ch.

3.2.5 are used.
The result can be seen in fig.

4.10. After a few iterations, the hydraulic conductivities
stabilize. The evaluate the quality of the result, the calculated configuration was compared
with the measured data for TDR water content and electrical conductivity in fig.

4.11. It
can be observed that the water content is represented quite well except that the decrease in
the last few days is not observed in the simulated model. Likewise, the tracer propagation
looks similar but happens faster in the simulation results. One possible explanation for this
behavior is that the water content decrease is mainly caused by evapo-transpiration which
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Figure 4.11:

Comparison of measured and inverted results for TDR water content and el. conductivity

is not yet accounted for in the numerical model

6. The missing upwards flux component
causes a faster water flow, and therefore faster tracer propagation in the simulation. Another
point is that the used time range is limited. If a longer time window, or more precisely, a
larger amount of total precipitation is are used, a better data significance can be reached. In
this case however, extending the time range to April/May would add only little precipitation
while intensifying the evapo-transpiration-induced problems. In this sense, the chosen time
window is a compromise.

To conclude, the first results look very promising. It has been shown that the method can
be applied to real field data with stable results. In contrast to the TDR water content only-
inversion, the tracer itself is monitored, and therefore the propagation can be controlled more
reliably

7. Adding support for evapo-transpiration and a more advanced transfer function is
most likely key to further improving the quality.

6

Evapo-Transpiration is the only effect that can create a flux upwards in the model, therefore a better match
is not possible with the given set.

7

In fact, the TDR only inversion showed an even faster tracer propagation for this data set



Chapter 5

Conclusion and Summary

In this thesis, a toolset of methods for the use of ERT in the context of hydrogeophysics was
developed, including new algorithms for ERT optimization and integration of multimethods
data into an hydraulic inversion. The toolset has been tested with synthetic and experimental
data.

ERT data processing As a core element for ERT-based evaluations, a numerical forward
solver was implemented. It solves the DC electric PDE using finite differences, and was
tested against analytical solutions. Around the open inversion package Res2DInv, a toolset
was build, to allow the automation of ERT data processing and data exchange with other
applications.
To identify datasets with optimal resolution, measurement array optimization was studied,
and an own lightweight algorithm implemented. The performance of this algorithm was
tested against the algorithm of Stummer, with comparable results for the tested problems at
significantly less computational complexity. This allows us to apply optimization to a large
electrode set of 96 electrodes.

To be able to transfer optimized arrays to our measurement instrument, a tool was cre-
ated. It also features an advanced self-devised algorithm to rearrage arrays for optimal usage
of the multichannel capability.
Also, studies on the hitherto neglected problem of electrode spacing was conducted. The
q-value as an indicator for the expected error level is introduced.

Hydrogeophysics Multimethods, i.e. the fusion of data from various geophysical meth-
ods, together with an hydraulic model, is identified as a key technique in hydrogeophysics.
Various existing techniques have been categorized and transferred to a multimethods setting.
Especially the question on how to constrain soft data with hard data has been addressed.
Then, a completely new approach for an integrated hydraulic inversion is presented. It has
the advantage that the ERT inversion can be eliminated altogether, therefore excluding one
major source of instability. While it does hold the inherent problems of all inverse methods,
it possesses maximal flexibility. Any weighted combination of data from different instru-
ments on different time windows can be specified as input.

77
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In a synthetic study, the new approach looks promising, and can resolve the hydraulic con-
ductivities of an example model.

All methods mentioned in the chapter are implemented and integrated into the ERT
toolset.

Experiment The methods developed are applied to a field experiment. On the Grenzhof
test site, a tracer study was conducted. An optimized ERT array was set up, an ERT, TDR
and GPR time series were recorded. An accuracy gain by ERT focussing could be observed,
but was limit due to the high information content of the base array.
The layer depths obtained by multichannel GPR evaluation showed to be, where present, con-
sistant with ERT. The method for ERT/GPR structure constraining was successfully tested
on this data set.

The comparison of ERT and TDR showed partial agreement, the exception most likely
being an ERT inversion artifact. The artifact could be mostly eliminated by hard constraining
with TDR data for the first half of the time window. For the later half, the constraining was
not sufficient.

Finally integrated hydraulic inversion was applied to the field data, with promising re-
sults. However, tracer propagation speed was slightly overrated, which can be linked to
lacking evapo-transpiration support.

Outlook The topics covered in this thesis offer various possibilities for further research
and refinement. The most promising extensions will be specified here.

Refinement of the integrated inversion The calibration conducted in this thesis could be
refined, and support for evapo-transpiration could be added. It is likely that a signif-
icant improvement could be reached in this way. The addition of other data sources
also seems interesting, especially the addition of a fullwave GPR forward solver.

3D ERT The current studies focused in 2D ERT measurements. While treatment of 3D ERT
and hydraulic simulation is analogical to the 2D case in theory, in practice new aspects
arise. For example, with growing measurement numbers, optimization will have a
much greater impact as in 2D. Also, due to increasing measurement duration, the dif-
ferent temperatures on the single data points, affecting the conductivity, have to be
taken into account. In the integrated inversion, this could be treated by timestamping.

Time-lapse inversion Another possibility to stabilize ERT inversion is time constraining.
Here, the differences in time are minimized. To do this, the complete series has to be
inverted in parallel.
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Figure 1:

IRIS Syscal Pro 96 (Picture from www.irisinstruments.com)

Figure 2:

Multichannel GPR measurement
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Figure 3:

Grenzhof test site

Figure 4:

Salt tracer application
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Wollschläger, U., and K. Roth: Estimation of Temporal Changes of Volumetric Soil Water Content
from Ground-Penetrating Radar Reflections, Subsurface Sensing Technologies and Applications 6,
207–218, 2005.

Xu, S. Z., Z. C. Gao, and S. Zao: An integral formulation for three-dimensional terrain modeling for
resistivity surveys, Geophysics 53, 546–552, 1988.

Yeh, T.-C. J., S. Liu, R. J. Glass, K. Baker, J. Brainard, and D. Alumbaugh: A geostatistically based
inverse model for electrical resistivity surveys and its application to vadose zone hydrology, Water
resources research 38, 1278–1290, 2002.

Zhao, S., and M. J. Yedlin: Some refinements on the finite-difference method for 3D dc resistivity
modeling, Geophysics 61, 1301–1307, 1996.

Zhou, Q. Y., J. Shimada, and A. Sato: Three-dimensional spatial and temporal monitoring of soil wa-
ter content using electrical resistivity tomography, Water Resources Research 37, 273–286, 2001.



Acknowledgements

First of all I want to thank Prof. Kurt Roth for the supervision of my project, many inspiring
insights and though-provoking discussions in physics and beyond. He had faith in me and my strange
ideas when I almost lost it. I also want to thank him for giving me the unique chance to join in the
Xinjiang field campaign. I wish you’ll be able to realize many of your ideas in the new job ! My
gratitude also goes to Prof. P. Nielaba and Prof. W. Dieterich, who kindly agreed to review my thesis,
even if the topic is not their field of study.

Thomas Günther owes my thanks for granting me access to his inversion code, which formed the
base for all my calculations, and his brilliant dissertation which soon became my ERT bible. Also, it
was nice to meet you in Heidelberg and Aachen !
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